nn.py 65.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Y
Yu Yang 已提交
14 15 16 17 18 19 20
"""
All layers just related to the neural network.
"""

from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
21
from ..param_attr import ParamAttr
Y
yangyaming 已提交
22
from tensor import concat
Y
Yu Yang 已提交
23 24

__all__ = [
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    'fc',
    'embedding',
    'dynamic_lstm',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'accuracy',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'sequence_pool',
    'pool2d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'sequence_expand',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
52
    'split',
W
wanghaoshuang 已提交
53
    'greedy_ctc_error',
C
caoying03 已提交
54
    'l2_normalize',
55
    'matmul',
Y
Yu Yang 已提交
56 57 58 59 60 61 62 63 64
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
65
       name=None):
Y
Yu Yang 已提交
66
    """
67
    **Fully Connected Layer**
Y
Yu Yang 已提交
68

C
caoying03 已提交
69 70 71 72 73 74 75 76 77
    The fully connected layer can take multiple tensors as its inputs. It
    creates a variable (one for each input tensor) called weights for each input
    tensor, which represents a fully connected weight matrix from each input
    unit to each output unit. The fully connected layer multiplies each input
    tensor with its coresponding weight to produce an output Tensor. If
    multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a biases variable will be
    created and added to the output. Finally, if activation is not None,
    it will be applied to the output as well.
C
caoying03 已提交
78

C
caoying03 已提交
79
    This process can be formulated as follows:
80 81 82

    .. math::

C
caoying03 已提交
83
        Out = Act({\sum_{i=0}^{N-1}W_iX_i + b})
84 85 86

    In the above equation:

C
caoying03 已提交
87 88 89 90
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
C
caoying03 已提交
91 92
    * :math:`Act`: The activation funtion.
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
93 94

    Args:
C
caoying03 已提交
95 96 97 98 99 100 101 102 103 104
       input(Variable|list): The input tensor(s) to the fully connected layer.
       size(int): The number of output units in the fully connected layer.
       num_flatten_dims(int): The fc layer can accept an input tensor with more
                              than two dimensions. If this happens, the
                              multidimensional tensor will first be flattened
                              into a 2-dimensional matrix. The parameter
                              `num_flatten_dims` determines how the input tensor
                              is flattened: the first `num_flatten_dims`
                              dimensions will be flatten to form the first
                              dimension of the final matrix (height of the
E
emailweixu 已提交
105
                              matrix), and the rest `rank(X) - num_flatten_dims`
C
caoying03 已提交
106 107 108 109
                              dimensions are flattened to form the second
                              dimension of the final matrix (width of the matrix).
                              For example, suppose `X` is a 6-dimensional tensor
                              with a shape [2, 3, 4, 5, 6], and
E
emailweixu 已提交
110
                              `num_flatten_dims` = 3. Then, the flattened matrix
C
caoying03 已提交
111
                              will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
E
emailweixu 已提交
112
                              By default, `num_flatten_dims` is set to 1.
C
caoying03 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
       param_attr(ParamAttr|list): The parameter attribute for learnable
                                   parameters/weights of the fully connected
                                   layer.
       param_initializer(ParamAttr|list): The initializer used for the
                                          weight/parameter. If set None,
                                          XavierInitializer() will be used.
       bias_attr(ParamAttr|list): The parameter attribute for the bias parameter
                                  for this layer. If set None, no bias will be
                                  added to the output units.
       bias_initializer(ParamAttr|list): The initializer used for the bias.
                                        If set None, then ConstantInitializer()
                                        will be used.
       act(str): Activation to be applied to the output of the fully connected
                 layer.
       name(str): Name/alias of the fully connected layer.
Y
Yu Yang 已提交
128 129


130
    Returns:
C
caoying03 已提交
131
        Variable: The output tensor variable.
132 133

    Raises:
C
caoying03 已提交
134
        ValueError: If rank of the input tensor is less than 2.
135 136 137 138

    Examples:
        .. code-block:: python

C
caoying03 已提交
139
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
140
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
141
    """
C
caoying03 已提交
142

C
caoying03 已提交
143
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
C
caoying03 已提交
163 164
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
Y
Yu Yang 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


180
def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Y
Yu Yang 已提交
181
    """
182 183 184 185 186 187 188
    **Embedding Layer**

    This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table.
    The result of this lookup is the embedding of each ID in the *input*.

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
189 190

    Args:
191
       input(Variable): Input to the function
Y
yangyaming 已提交
192
       size(tuple|list|None): Shape of the look up table parameter
193 194 195
       is_sparse(bool): Boolean flag that specifying whether the input is sparse
       param_attr(ParamAttr): Parameters for this layer
       dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
196

197 198 199
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
200

201 202
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
203

C
chengduoZH 已提交
204
          dict_size = len(dataset.ids)
205
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
206
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
    return tmp


# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
232
                 dtype='float32'):
Y
Yu Yang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


def gru_unit(input,
             hidden,
             size,
             weight=None,
             bias=None,
             activation='tanh',
275
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
276
    """
277
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
278

279 280
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
281

282
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
283

284
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
285

286
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
287 288

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
289 290 291
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
292 293
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

294 295
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
296 297 298
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
299 300 301 302 303 304 305 306 307

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
        weight (ParamAttr): The weight parameters for gru unit. Default: None
        bias (ParamAttr): The bias parameters for gru unit. Default: None
        activation (string): The activation type for cell (actNode). Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
Y
Yu Yang 已提交
308

309 310 311 312 313 314
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
315

316
             # assuming we have x_t_data and prev_hidden of size=10
317
             x_t = fluid.layers.fc(input=x_t_data, size=30)
318 319
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
    size = size / 3

    # create weight
    if weight is None:
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)

    # create bias
Y
Yibing Liu 已提交
340

Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    if bias is None:
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru_unit',
        inputs={'Input': input,
                'HiddenPrev': hidden,
                'Weight': weight},
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
            'activation': 0,
            'gate_activation': 1,
        })

    return updated_hidden, reset_hidden_pre, gate


368
def linear_chain_crf(input, label, param_attr=None):
Y
Yu Yang 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


394
def crf_decoding(input, param_attr, label=None):
Y
Yu Yang 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


def cos_sim(X, Y, **kwargs):
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
def dropout(x, dropout_prob, is_test=False, seed=0, **kwargs):
    helper = LayerHelper('dropout', **kwargs)
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
        attrs={'dropout_prob': dropout_prob,
               'is_test': is_test,
               'seed': seed})
    return out


Y
Yu Yang 已提交
442 443
def cross_entropy(input, label, **kwargs):
    """
Y
Yibing Liu 已提交
444 445 446 447 448 449
    **Cross Entropy Layer**

    This layer computes the cross entropy between `input` and `label`. It supports
    both standard cross-entropy and soft-label cross-entropy loss computation.

    1) One-hot cross-entropy:
Y
Yibing Liu 已提交
450
	`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
451

Y
Yibing Liu 已提交
452
        .. math::
Y
yangyaming 已提交
453

Y
Yibing Liu 已提交
454 455 456
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
Y
Yibing Liu 已提交
457
	`soft_label = True`, `Label[i, j]` indicates the soft label of class j
Y
Yibing Liu 已提交
458 459 460 461 462 463
	for sample i:

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
464
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
465 466 467 468
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
	 As a special case of 2), when each row of 'label' has only one
Y
Yibing Liu 已提交
469 470
	 non-zero element which is equal to 1, soft-label cross-entropy degenerates
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
471

Y
Yibing Liu 已提交
472
    Args:
Y
yangyaming 已提交
473 474
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
            batch size and D is the number of classes. This input is a probability
Y
Yibing Liu 已提交
475 476
            computed by the previous operator, which is almost always the result
            of a softmax operator.
Y
yangyaming 已提交
477 478 479
        label (Variable|list): the ground truth which is a 2-D tensor. When
              `soft_label` is set to `False`, `label` is a tensor<int64> with shape
              [N x 1]. When `soft_label` is set to `True`, `label` is a
Y
Yibing Liu 已提交
480
              tensor<float/double> with shape [N x D].
Y
Yibing Liu 已提交
481
        soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
Y
Yibing Liu 已提交
482
              the given labels as soft labels, default `False`.
Y
Yibing Liu 已提交
483 484 485 486 487

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
Y
yangyaming 已提交
488
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
Y
Yibing Liu 已提交
489 490
              `soft_label == True`, and the 2nd dimension of `input` and `label` are not \
               equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
Y
Yibing Liu 已提交
491 492 493 494 495 496

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510
    """
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    """
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    **Square error cost layer**

    This layer accepts input predictions and target label and returns the squared error cost.
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
       input(Variable): Input tensor, has predictions.
       label(Variable): Label tensor, has target labels.

    Returns:
        Variable: The tensor variable storing the element-wise squared error difference \
                  of input and label.

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
541 542 543 544 545 546 547 548 549 550 551
    """
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
552 553
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    return square_out


def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out = helper.create_tmp_variable(dtype="float32")
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out


def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
Y
yangyaming 已提交
598
    This function computes and outputs the precision, recall and
599
    F1-score of chunk detection.
Y
Yu Yang 已提交
600 601 602 603 604 605 606
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
607 608 609
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
610 611 612 613 614 615 616 617

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
618 619 620 621
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
622 623 624
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
625 626
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
627
        })
628
    return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks
Y
Yu Yang 已提交
629 630 631 632 633 634 635 636 637


def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
638
                  act=None):
Y
Yu Yang 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """

    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
            'contextStart': -int(filter_size / 2),
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


def conv2d(input,
           num_filters,
           filter_size,
           stride=None,
           padding=None,
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
680
           use_cudnn=True,
C
chengduoZH 已提交
681
           act=None):
Y
Yu Yang 已提交
682
    """
C
chengduoZH 已提交
683 684 685 686 687 688 689 690
    **Convlution2D Layer**

    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels, H is the height
    of the feature, and W is the width of the feature.
    The details of convolution layer, please refer UFLDL's `convolution,
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
C
refine  
chengduoZH 已提交
691
    If bias attribution and activation type are provided, bias is added to the output of the convolution,
C
chengduoZH 已提交
692 693 694
    and the corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:

C
refine  
chengduoZH 已提交
695

C
chengduoZH 已提交
696 697
    .. math::

C
refine  
chengduoZH 已提交
698
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
699

C
chengduoZH 已提交
700
    In the above equation:
C
chengduoZH 已提交
701 702 703

        * :math:`X`: Input value, a tensor with NCHW format.
        * :math:`W`: Filter value, a tensor with MCHW format.
C
chengduoZH 已提交
704
        * :math:`\\ast`: Convolution operation.
C
refine  
chengduoZH 已提交
705
        * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
C
chengduoZH 已提交
706
        * :math:`\\sigma`: Activation function.
C
chengduoZH 已提交
707 708 709 710
        * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

C
chengduoZH 已提交
711 712
        Input:
            Input shape: $(N, C_{in}, H_{in}, W_{in})$
C
refine  
chengduoZH 已提交
713

C
chengduoZH 已提交
714
            Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
refine  
chengduoZH 已提交
715

C
chengduoZH 已提交
716 717
        Output:
            Output shape: $(N, C_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
718
        Where
C
chengduoZH 已提交
719
    .. math::
C
chengduoZH 已提交
720

C
chengduoZH 已提交
721 722
        H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
        W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
723 724

    Args:
C
chengduoZH 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        groups(int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
744 745
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduoZH 已提交
746
        act(str): Activation type. Default: None
C
chengduoZH 已提交
747 748 749 750 751

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
752 753 754
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.

C
chengduoZH 已提交
755 756 757
    Examples:
        .. code-block:: python

C
refine  
chengduoZH 已提交
758
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
C
chengduoZH 已提交
759
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
    """

    if stride is None:
        stride = [1, 1]
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
C
chengduoZH 已提交
781 782
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
800
        type='conv2d',
Y
Yu Yang 已提交
801 802 803 804 805
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
806 807 808 809 810 811
        attrs={
            'strides': stride,
            'paddings': padding,
            'groups': groups,
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
812 813 814 815 816 817 818 819

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


def sequence_pool(input, pool_type, **kwargs):
    """
Y
yangyaming 已提交
820 821 822
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
F
fengjiayi 已提交
848

L
Luo Tao 已提交
849 850
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
851
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
852 853 854 855 856 857 858 859
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
860

Y
yangyaming 已提交
861
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
862 863 864 865 866
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
Y
Yu Yang 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879
    """
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
880 881 882 883 884
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
885 886 887
    return pool_out


888
def sequence_first_step(input, **kwargs):
L
Luo Tao 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902
    """
    This funciton get the first step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
903

L
Luo Tao 已提交
904 905 906 907 908 909 910 911 912
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
913

Y
yangyaming 已提交
914
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
915 916 917
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
918 919 920 921
    return sequence_pool(input=input, pool_type="first")


def sequence_last_step(input, **kwargs):
L
Luo Tao 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935
    """
    This funciton get the last step of sequence.

    .. code-block:: text

       x is a 1-level LoDTensor:
         x.lod = [[0, 2, 5, 7]]
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
         with condition len(x.lod[-1]) - 1 == out.dims[0]
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
936

L
Luo Tao 已提交
937 938 939 940 941 942 943 944 945
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
946

Y
yangyaming 已提交
947
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
948 949 950
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
951 952 953
    return sequence_pool(input=input, pool_type="last")


Y
Yu Yang 已提交
954 955 956 957 958
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=None,
           pool_padding=None,
C
chengduoZH 已提交
959
           global_pooling=False,
C
chengduoZH 已提交
960
           use_cudnn=True,
C
caoying03 已提交
961
           name=None):
Y
Yu Yang 已提交
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
    if pool_padding is None:
        pool_padding = [0, 0]
    if pool_stride is None:
        pool_stride = [1, 1]
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]
C
chengduoZH 已提交
980 981
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995

    helper = LayerHelper('pool2d', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
996 997
            "paddings": pool_padding,
            "use_cudnn": use_cudnn
Y
Yu Yang 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
1010 1011
               data_layout='NCHW',
               name=None):
Y
Yu Yang 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
1038
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
1039 1040

    mean = helper.create_global_variable(
Q
QI JUN 已提交
1041 1042 1043 1044
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1045 1046 1047
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))

    variance = helper.create_global_variable(
Q
QI JUN 已提交
1048 1049 1050 1051
        dtype=input.dtype,
        shape=param_shape,
        persistable=True,
        stop_gradient=True)
Y
Yu Yang 已提交
1052 1053 1054 1055 1056 1057 1058
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
1059 1060
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


C
caoying03 已提交
1087
def beam_search_decode(ids, scores, name=None):
Y
Yu Yang 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
C
chengduoZH 已提交
1110
                     dilation=None,
C
chengduoZH 已提交
1111
                     param_attr=None,
C
chengduoZH 已提交
1112
                     use_cudnn=True,
C
caoying03 已提交
1113
                     name=None):
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    """
    The transpose of conv2d layer.

    This layer is also known as deconvolution layer.

    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
C
chengduoZH 已提交
1136 1137 1138
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation.
Y
Yu Yang 已提交
1139
        param_attr: Parameter Attribute.
1140 1141
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
caoying03 已提交
1142 1143
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
Yu Yang 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
C
chengduoZH 已提交
1161
        op_attr['strides'] = [stride, stride]
Y
Yu Yang 已提交
1162 1163 1164
    elif stride is not None:
        op_attr['strides'] = stride

C
chengduoZH 已提交
1165 1166 1167 1168 1169
    if isinstance(dilation, int):
        op_attr['dilations'] = [dilation, dilation]
    elif dilation is not None:
        op_attr['dilations'] = dilation

C
chengduoZH 已提交
1170 1171 1172 1173
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    op_attr['use_cudnn'] = use_cudnn

Y
Yu Yang 已提交
1174 1175 1176 1177 1178 1179 1180 1181
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])
C
chengduoZH 已提交
1182
        dilation = op_attr.get('dilations', [1, 1])
Y
Yu Yang 已提交
1183 1184 1185

        h_in = input.shape[2]
        w_in = input.shape[3]
C
chengduoZH 已提交
1186 1187 1188 1189 1190

        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
                         padding[0] - 1) / dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
                         padding[1] - 1) / dilation[1] + 1
Y
Yu Yang 已提交
1191
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
1192

Y
Yu Yang 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)

    return out
Y
yangyaming 已提交
1209 1210


C
caoying03 已提交
1211
def sequence_expand(x, y, name=None):
1212 1213
    """Sequence Expand Layer. This layer will expand the input variable **x**
    according to LoD information of **y**. And the following examples will
Y
yangyaming 已提交
1214
    explain how sequence_expand works:
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
                x.lod = [[0,       2, 3],
                         [0, 1,    3, 4]]
                x.data = [a, b, c, d]
                x.dims = [4, 1]

            y is a LoDTensor:
                y.lod = [[0,    2,    4],
                         [0, 3, 6, 7, 8]]

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 2-level LoDTensor:
                out.lod = [[0,                2,    4],
                           [0,       3,       6, 7, 8]]
                out.data = [a, a, a, b, b, b, c, d]
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
                x.data = [a, b, c]
                x.dims = [3, 1]

            y is a LoDTensor:
Y
yangyaming 已提交
1243
                y.lod = [[0, 2, 3, 6]]
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

            with condition len(y.lod[-1]) - 1 == x.dims[0]

            then output is a 1-level LoDTensor:
                out.lod = [[0,    2, 3,      6]]
                out.data = [a, a, b, c, c, c]
                out.dims = [6, 1]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
C
caoying03 已提交
1255 1256
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
1267
            out = layers.sequence_expand(x=x, y=y)
1268
    """
Y
yangyaming 已提交
1269
    helper = LayerHelper('sequence_expand', input=x, **locals())
1270 1271 1272
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
1273 1274
        type='sequence_expand', inputs={'X': x,
                                        'Y': y}, outputs={'Out': tmp})
1275
    return tmp
1276 1277


Y
yangyaming 已提交
1278 1279 1280 1281
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
1282
              param_attr=None,
C
caoying03 已提交
1283 1284
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
1285 1286 1287 1288
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

1289
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
1290

1291
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
1292

1293
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
1294

1295
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
1296 1297 1298

            h_t & = o_t tanh(c_t)

1299 1300 1301 1302 1303 1304
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
1305 1306 1307

        .. math::

1308
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
1309 1310 1311 1312 1313 1314 1315 1316

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
1317
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
1318 1319

    Args:
Y
yangyaming 已提交
1320 1321 1322 1323 1324 1325
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
1326
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
1327 1328
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
1329 1330
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
1331 1332
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
1333 1334

    Returns:
Y
yangyaming 已提交
1335
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
1336 1337 1338 1339

    Raises:
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\
                not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \
1340 1341
                and **cell_t_prev** not be the same or the 2nd dimensions of \
                **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
1342 1343 1344 1345 1346 1347

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
1348
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
1349
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
1350
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
1367
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
1368 1369 1370 1371
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
1372 1373
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
1374 1375 1376
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
1377
    size = cell_t_prev.shape[1]
1378
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
1379 1380
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
1381
                param_attr=param_attr,
1382
                bias_attr=bias_attr)
Y
yangyaming 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
1395
    return h, c
G
guosheng 已提交
1396 1397


C
caoying03 已提交
1398
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1399
    """
Y
yangyaming 已提交
1400
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1401 1402 1403

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1404 1405 1406 1407
        dim (int|None): The dimension along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
            range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
G
guosheng 已提交
1408
            the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1409 1410
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1411
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1412 1413
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1414 1415 1416

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1417

G
guosheng 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1442 1443


C
caoying03 已提交
1444
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1445
    """
Y
yangyaming 已提交
1446
    Computes the mean of tensor elements over the given dimension.
G
guosheng 已提交
1447 1448 1449

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1450 1451 1452 1453
        dim (int|None): The dimension along which the mean is computed. If
            :attr:`None`, compute the mean over all elements of :attr:`input`
            and return a Tensor variable with a single element, otherwise
            must be in the range :math:`[-rank(input), rank(input))`. If
G
guosheng 已提交
1454
            :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1455 1456
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
1457
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1458 1459
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1460 1461 1462

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
1463

G
guosheng 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
1488 1489


C
caoying03 已提交
1490
def reduce_max(input, dim=None, keep_dim=False, name=None):
1491
    """
Y
yangyaming 已提交
1492
    Computes the maximum of tensor elements over the given dimension.
1493 1494 1495

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1496 1497 1498 1499
        dim (int|None): The dimension along which the maximum is computed.
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1500
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1501 1502
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1503
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1504 1505
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1506 1507 1508

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
1536
def reduce_min(input, dim=None, keep_dim=False, name=None):
1537
    """
Y
yangyaming 已提交
1538
    Computes the minimum of tensor elements over the given dimension.
1539 1540 1541

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
yangyaming 已提交
1542 1543 1544 1545
        dim (int|None): The dimension along which the minimum is computed.
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
1546
            If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
Y
yangyaming 已提交
1547 1548
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
1549
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
1550 1551
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
1552 1553 1554

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else 0,
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
1580 1581


C
caoying03 已提交
1582
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
1583
    """
C
caoying03 已提交
1584
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
1585 1586 1587

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
1588 1589 1590 1591 1592
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
1593
            :attr:`dim` dimension orderly.
1594
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
1595
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
1596 1597
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

    Returns:
        List: The list of segmented tensor variables.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
1640 1641


C
caoying03 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

    output = x / sqrt(max(sum(x**2), epsilon))

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
       x(Variable|list): The input tensor to l2_normalize layer.
       axis(int): Dimension along which to normalize the input.
       epsilon(float): A lower bound value for `x`'s l2 norm. sqrt(epsilon) will
                       be used as the divisor if the l2 norm of `x` is less than
                       sqrt(epsilon).
       name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.


    Returns:
        Variable: The output tensor variable.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name="data",
                                   shape=(3, 17, 13),
                                   dtype="float32")
          fc = fluid.layers.l2_normalize(x=data, axis=1)
    """

    if len(x.shape) == 1: axis = 0

    helper = LayerHelper("l2_normalize", **locals())

    square = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(type="square", inputs={"X": x}, outputs={"Out": square})

    reduced_sum = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reduce_sum",
        inputs={"X": square},
        outputs={"Out": reduced_sum},
        attrs={
            "dim": 1 if axis is None else axis,
            "keep_dim": True,
            "reduce_all": False
        })

    # TODO(caoying) A lower bound value epsilon for the norm is needed to
    # imporve the numeric stability of reciprocal. This requires a maximum_op.
    rsquare = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="reciprocal", inputs={"X": reduced_sum}, outputs={"Out": rsquare})

    # TODO(caoying) the current elementwise_mul operator does not support a
    # general broadcast rule which broadcasts input(Y) to have the same
    # dimension with Input(X) starting from a specified dimension. So this
1703
    # exanpsion is requred. Once a general broadcast rule is spported, this
C
caoying03 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    # expanding canbe removed.
    rsquare_expanded = helper.create_tmp_variable(dtype=x.dtype)
    expand_times = [1] * len(x.shape)
    expand_times[axis] = int(x.shape[axis])
    helper.append_op(
        type="expand",
        inputs={"X": rsquare},
        outputs={"Out": rsquare_expanded},
        attrs={"expand_times": expand_times})

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type="elementwise_mul",
        inputs={"X": x,
                "Y": rsquare_expanded},
        outputs={"Out": out})
    return out
1721 1722


1723
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
1724
    """
1725
    Applies matrix multipication to two tensors. Currently only rank 1 to rank
1726
    3 input tensors are supported.
G
guosheng 已提交
1727

1728
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
1729
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
1730

1731 1732 1733 1734 1735
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
1736
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
1737

1738
    - After transpose, the two tensors are 2-D or 3-D and matrix multipication
1739
      performs in the following way.
G
guosheng 已提交
1740

1741
      - If both are 2-D, they are multiplied like conventional matrices.
1742 1743
      - If either is 3-D, it is treated as a stack of matrices residing in the
        last two dimensions and a batched matrix multiply supporting broadcast
1744
        applies on the two tensors.
G
guosheng 已提交
1745

1746 1747
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
1748
    removed after matrix multipication.
G
guosheng 已提交
1749 1750 1751

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
1752 1753 1754
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
1755
        name(str|None): A name for this layer(optional). If set None, the layer
1756
            will be named automatically.
G
guosheng 已提交
1757 1758

    Returns:
1759
        Variable: The product Tensor variable.
G
guosheng 已提交
1760

G
guosheng 已提交
1761 1762 1763
    Examples:
        .. code-block:: python

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            # Examples to clarify shapes of the inputs and output
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
            # x: [M], y: [N]
1776

1777
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
1778
    """
1779 1780 1781 1782 1783
    helper = LayerHelper('matmul', **locals())
    assert max(
        len(x.shape), len(y.shape)
    ) <= 3, 'Currently only rank 1 to rank 3 input tensors are supported.'
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
G
guosheng 已提交
1784
    helper.append_op(
1785 1786 1787 1788 1789 1790 1791
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
1792 1793


W
wanghaoshuang 已提交
1794
def greedy_ctc_error(input, label, blank, normalized=False, name=None):
1795
    """
W
wanghaoshuang 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    This evaluator is to calculate sequence-to-sequence edit distance.

    Args:

        input(Variable): (LodTensor, default: LoDTensor<float>), the unscaled probabilities of variable-length sequences, which is a 2-D Tensor with LoD information. It's shape is [Lp, num_classes + 1], where Lp is the sum of all input sequences' length and num_classes is the true number of classes. (not including the blank label).

        label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth of variable-length sequence, which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1], where Lg is th sum of all labels' length.

        blank(int): the blank label index of Connectionist Temporal Classification (CTC) loss, which is in thehalf-opened interval [0, num_classes + 1).

        normalized(bool): Indicated whether to normalize the edit distance by the length of reference string.
1807

W
wanghaoshuang 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    Returns:
        Variable: sequence-to-sequence edit distance loss in shape [batch_size, 1].

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')

            cost = fluid.layers.greedy_ctc_error(input=x,label=y, blank=0)
    """
    helper = LayerHelper("greedy_ctc_error", **locals())
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    # top 1 op
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": 1})

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
1835
        outputs={"Output": [ctc_out]},
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
        attrs={"merge_repeated": True,
               "blank": blank})

    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [ctc_out],
                "Refs": [label]},
        outputs={"Out": [edit_distance_out]},
        attrs={"normalized": normalized})

    return edit_distance_out