profiler.h 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <forward_list>
#include <list>
C
chengduo 已提交
18 19 20
#include <map>
#include <memory>
#include <mutex>  // NOLINT
21
#include <string>
C
chengduo 已提交
22 23 24
#include <unordered_map>
#include <unordered_set>
#include <utility>
D
dangqingqing 已提交
25
#include <vector>
26
#include "paddle/fluid/framework/type_defs.h"
27 28
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/event.h"
C
chengduo 已提交
29
#include "paddle/fluid/platform/place.h"
D
dangqingqing 已提交
30
#ifdef PADDLE_WITH_CUDA
31
#include "paddle/fluid/platform/gpu_info.h"
D
dangqingqing 已提交
32
#endif
33 34
namespace paddle {
namespace platform {
D
dangqingqing 已提交
35

W
wangchaochaohu 已提交
36 37 38
const int kEnableProfiler = 1;
const int kDisableProfiler = 2;

39
enum class ProfilerState {
D
dangqingqing 已提交
40 41 42
  kDisabled,  // disabled state
  kCPU,       // CPU profiling state
  kCUDA,      // GPU profiling state
43
  kAll,       // Profile both CPU and GPU. (Currently experimental).
D
dangqingqing 已提交
44 45
};

46 47 48 49 50 51 52
// it is the flag to control to print the profiling result
enum class TracerOption {
  kDefault,      // print the different op type profiling result
  kOpDetail,     // print the detail profiling result of different op type
  kAllOpDetail,  // print the detail profiling result of different op name
};

W
wangchaochaohu 已提交
53 54 55 56 57 58 59 60 61 62 63
// Candidate keys to sort the profiling report
enum class EventSortingKey {
  kDefault,
  kCalls,
  kTotal,
  kMin,
  kMax,
  kAve,
  kCPUTime,
  kGPUTime
};
D
dangqingqing 已提交
64

W
wangchaochaohu 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
struct MemoryProfierReport {
  size_t alloc_times{0};
  size_t alloc_size{0};
  size_t free_times{0};
  size_t free_size{0};
};

// The information of each event given in the profiling report
struct EventItem {
  std::string name;
  int calls;
  double total_time;
  double max_time;
  double ave_time;
  double min_time;
  double cpu_time;
  double gpu_time;
  float ratio;
83
  EventRole role;
W
wangchaochaohu 已提交
84 85 86 87 88 89 90 91 92 93
};

struct OverHead {
  bool print = false;
  double total_time = 0.;
  float compute_ratio = 0.0f;
  float framework_ratio = 0.0f;
  EventItem memcpy_item;
  std::vector<EventItem> sub_memcpy_items;
};
C
chengduo 已提交
94 95 96 97 98 99 100

struct MemEvenRecorder {
 public:
  void PushMemRecord(const void* ptr, const Place& place, size_t size);
  void PopMemRecord(const void* ptr, const Place& place);
  void Flush();
  static MemEvenRecorder& Instance() { return recorder; }
101

C
chengduo 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
 private:
  struct RecordMemEvent {
    RecordMemEvent(const Place& place, size_t bytes);
    ~RecordMemEvent();

    Place place_;
    size_t bytes_;
    uint64_t start_ns_;
    uint64_t end_ns_;
    std::string alloc_in_;
    std::string free_in_;
  };

  static MemEvenRecorder recorder;
  std::map<Place,
           std::unordered_map<const void*, std::unique_ptr<RecordMemEvent>>>
      address_memevent_;
  std::mutex mtx_;
  MemEvenRecorder() {}
  DISABLE_COPY_AND_ASSIGN(MemEvenRecorder);
};

D
dangqingqing 已提交
124
struct RecordEvent {
125
  RecordEvent(const std::string& name,
126
              const EventRole role = EventRole::kOrdinary);
D
dangqingqing 已提交
127

D
dangqingqing 已提交
128 129
  ~RecordEvent();

X
Xin Pan 已提交
130
  bool is_enabled_;
X
Xin Pan 已提交
131
  uint64_t start_ns_;
Y
Yibing Liu 已提交
132
  // Event name
133
  std::string name_;
134 135 136
  // Need to distinguish name by op type, block_id, program_id and perhaps
  // different kernel invocations within an op.
  std::string full_name_;
137
  EventRole role_{EventRole::kOrdinary};
D
dangqingqing 已提交
138 139
};

G
gongweibao 已提交
140 141
class RecordRPCEvent {
 public:
142
  explicit RecordRPCEvent(const std::string& name);
G
gongweibao 已提交
143 144 145 146 147 148
  ~RecordRPCEvent() {}

 private:
  std::unique_ptr<RecordEvent> event_;
};

X
Xin Pan 已提交
149 150 151 152 153
struct RecordBlock {
  explicit RecordBlock(int block_id);
  ~RecordBlock();

 private:
X
Xin Pan 已提交
154
  bool is_enabled_;
X
Xin Pan 已提交
155 156 157 158
  std::string name_;
  uint64_t start_ns_;
};

C
chengduo 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
template <typename T>
struct EventList {
  constexpr static size_t kMB = 1024 * 1024;
  constexpr static size_t kEventBlockSize = 16 * kMB;
  constexpr static size_t kEventSize = sizeof(T);
  constexpr static size_t kEventAlign = alignof(T);
  constexpr static size_t kNumBlock =
      kEventBlockSize /
      ((kEventSize + kEventAlign - 1) / kEventAlign * kEventAlign);

  template <typename... Args>
  T* Record(Args&&... args) {
    if (event_blocks.empty() || event_blocks.front().size() == kNumBlock) {
      event_blocks.emplace_front();
      event_blocks.front().reserve(kNumBlock);
    }
    event_blocks.front().emplace_back(std::forward<Args>(args)...);
    return &event_blocks.front().back();
  }

  std::vector<T> Reduce() {
    std::vector<T> result;
    for (auto& block : event_blocks) {
      result.insert(result.begin(), std::make_move_iterator(block.begin()),
                    std::make_move_iterator(block.end()));
    }
    event_blocks.clear();
    return result;
  }

  void Clear() { event_blocks.clear(); }

  std::forward_list<std::vector<T>> event_blocks;
};

W
wangchaochaohu 已提交
194 195 196 197 198
void Mark(const std::string& name);
void PushMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
                  const Place& place, const std::string& annotation);
void PopMemEvent(uint64_t start_ns, uint64_t end_ns, size_t bytes,
                 const Place& place, const std::string& annotation);
199
Event* PushEvent(const std::string& name, const EventRole role);
W
wangchaochaohu 已提交
200 201 202 203 204
void PopEvent(const std::string& name);
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
std::vector<std::vector<Event>> GetAllEvents();

205 206 207 208
// Enable the profiling function.
void EnableProfiler(ProfilerState state);
// Clear the g_all_event_lists, which is total event lists of all threads.
void ResetProfiler();
X
Xin Pan 已提交
209 210
void DisableProfiler(EventSortingKey sorted_key,
                     const std::string& profile_path);
211 212 213 214
// Test if the profiler is currently enabled.
bool IsProfileEnabled();
// Whether the trainer should send profiling state to PS.
bool ShouldSendProfileState();
215 216 217 218
std::string OpName(const framework::VariableNameMap& name_map,
                   const std::string& type_name);
void SetTracerOption(TracerOption option);
platform::TracerOption GetTracerOption();
219 220 221 222
#ifdef PADDLE_WITH_CUDA
void DummyKernelAndEvent();
#endif

W
wangchaochaohu 已提交
223 224 225 226
// Mark current process as PS by assigning a lister id.
void SetProfileListener();
int64_t ListenerId();

D
dangqingqing 已提交
227 228
}  // namespace platform
}  // namespace paddle