framework.py 11.4 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
F
fengjiayi 已提交
2
import paddle.v2.framework.proto.framework_pb2 as framework_pb2
Y
Yu Yang 已提交
3
import collections
Y
Yu Yang 已提交
4
import numpy as np
Y
Yu Yang 已提交
5
import copy
Y
Yu Yang 已提交
6

Y
Yu Yang 已提交
7
__all__ = ['Block', 'Variable', 'Program', 'Operator']
Y
Yu Yang 已提交
8 9 10


class Variable(object):
Y
Yu Yang 已提交
11 12
    def __init__(self,
                 block,
Y
Yu Yang 已提交
13
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
14 15 16 17 18
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
                 **kwargs):
Y
Yu Yang 已提交
19 20 21 22
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
Y
Yu Yang 已提交
23
        try:
24
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
25 26
            is_new_var = False
        except core.EnforceNotMet:
27
            self.desc = self.block.desc.new_var(name)
Y
Yu Yang 已提交
28
            is_new_var = True
Y
Yu Yang 已提交
29

Y
Yu Yang 已提交
30 31 32 33 34 35 36 37
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
38
        if shape is not None:
Y
Yu Yang 已提交
39
            if is_new_var:
40
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
41 42 43 44 45 46 47 48
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
49
        if dtype is not None:
Y
Yu Yang 已提交
50 51
            if not isinstance(dtype, core.DataType):
                dtype = Variable._convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
52
            if is_new_var:
53
                self.desc.set_data_type(dtype)
Y
Yu Yang 已提交
54 55 56 57 58 59 60 61
            else:
                old_dtype = self.data_type()
                if dtype != old_shape:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
62 63

        if lod_level is not None:
Y
Yu Yang 已提交
64
            if is_new_var:
65
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
66 67 68 69 70 71 72
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
Y
Yu Yang 已提交
73
        self.block.vars[name] = self
Y
Yu Yang 已提交
74
        self.op = None
Y
Yu Yang 已提交
75

Y
Yu Yang 已提交
76 77
    @property
    def name(self):
78
        return self.desc.name()
Y
Yu Yang 已提交
79 80 81 82

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
83
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
84 85 86

    @property
    def data_type(self):
87
        return self.desc.data_type()
Y
Yu Yang 已提交
88 89 90

    @property
    def lod_level(self):
91
        return self.desc.lod_level()
Y
Yu Yang 已提交
92 93 94 95 96 97

    @staticmethod
    def _unique_var_name_():
        uid = core.unique_integer()  # unique during whole process.
        return "_generated_var_%d" % uid

Y
Yu Yang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    @staticmethod
    def _convert_np_dtype_to_dtype_(np_dtype):
        dtype = np.dtype(np_dtype)
        if dtype == np.float32:
            return core.DataType.FP32
        elif dtype == np.float64:
            return core.DataType.FP64
        elif dtype == np.float16:
            return core.DataType.FP16
        elif dtype == np.int32:
            return core.DataType.INT32
        elif dtype == np.int16:
            return core.DataType.INT16
        elif dtype == np.int64:
            return core.DataType.INT64
        elif dtype == np.bool:
            return core.DataType.BOOL
        else:
            raise ValueError("Not supported numpy dtype " + str(dtype))

Y
Yu Yang 已提交
118

F
fengjiayi 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
    :return: A list of registered OpProto.
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
        assert type in self.op_proto_map, "Operator \"%s\" has not been registered." % type
        return self.op_proto_map[type]


Y
Yu Yang 已提交
153
class Operator(object):
F
fengjiayi 已提交
154 155 156 157 158 159
    def __init__(self,
                 block,
                 desc,
                 type=None,
                 inputs=None,
                 outputs=None,
Y
Yu Yang 已提交
160 161
                 attrs=None):
        self.block = block
F
Update  
fengjiayi 已提交
162
        self.desc = desc
F
fengjiayi 已提交
163 164 165 166 167
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
168
        self.desc.set_type(type)
F
fengjiayi 已提交
169
        proto = OpProtoHolder.instance().get_op_proto(type)
F
Update  
fengjiayi 已提交
170

Y
Yu Yang 已提交
171
        if inputs is not None:
F
fengjiayi 已提交
172
            for in_proto in proto.inputs:
F
Update  
fengjiayi 已提交
173 174 175 176 177 178 179 180 181
                in_argus = inputs[in_proto.name]
                if not isinstance(in_argus, list):
                    in_argus = [in_argus]
                if not in_proto.duplicable and len(in_argus) > 1:
                    raise ValueError(
                        "Input %s expects only one input, but %d are given." %
                        (in_proto.name, len(in_argus)))
                in_argu_names = []
                for argu in in_argus:
F
fengjiayi 已提交
182
                    in_argu_names.append(argu.name)
F
Update  
fengjiayi 已提交
183
                self.desc.set_input(in_proto.name, in_argu_names)
F
Update  
fengjiayi 已提交
184

Y
Yu Yang 已提交
185
        if outputs is not None:
F
fengjiayi 已提交
186
            for out_proto in proto.outputs:
F
Update  
fengjiayi 已提交
187 188 189 190 191 192 193 194 195
                out_argus = outputs[out_proto.name]
                if not isinstance(out_argus, list):
                    out_argus = [out_argus]
                if not out_proto.duplicable and len(out_argus) > 1:
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
                        (out_proto.name, len(out_argus)))
                out_argu_names = []
                for argu in out_argus:
F
fengjiayi 已提交
196
                    out_argu_names.append(argu.name)
F
fengjiayi 已提交
197
                    argu.op = self
F
Update  
fengjiayi 已提交
198 199
                self.desc.set_output(out_proto.name, out_argu_names)

Y
Yu Yang 已提交
200
        if attrs is not None:
F
fengjiayi 已提交
201
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
202 203 204 205 206 207 208
                attr_name = attr.name
                if not attr_name in attrs:
                    continue
                if not isinstance(attrs[attr_name], Block):
                    self.desc.set_attr(attr_name, attrs[attr_name])
                else:
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
Y
Yu Yang 已提交
209

210
        self.desc.check_attrs()
F
fengjiayi 已提交
211 212
        self.desc.infer_shape(self.block.desc)

F
fengjiayi 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
        return self.desc.input(name)

    @property
    def input_names(self):
        return self.desc.input_names()

    def output(self, name):
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

    def has_attr(self, name):
        return self.desc.has_attr(name)

    def attr_type(self, name):
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
        return self.desc.attr(name)

    def block_attr(self, name):
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
246 247


Y
Yu Yang 已提交
248 249
class Block(object):
    def __init__(self, program, idx):
F
fengjiayi 已提交
250
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
251
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
252
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
253 254 255 256
        self.program = program

    @property
    def parent_idx(self):
F
fengjiayi 已提交
257
        return self.desc.parent
Y
Yu Yang 已提交
258 259 260

    @property
    def idx(self):
F
fengjiayi 已提交
261
        return self.desc.id
Y
Yu Yang 已提交
262

Y
Yu Yang 已提交
263 264 265
    def create_var(self, *args, **kwargs):
        return Variable(self, *args, **kwargs)

Y
Yu Yang 已提交
266 267 268 269
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
        return Parameter(global_block, *args, **kwargs)

Y
Yu Yang 已提交
270
    def append_op(self, *args, **kwargs):
F
fengjiayi 已提交
271
        op_desc = self.desc.append_op()
F
Update  
fengjiayi 已提交
272
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
273 274 275 276
        self.ops.append(op)
        return op

    def prepend_op(self, *args, **kwargs):
F
fengjiayi 已提交
277 278
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
279 280 281
        self.ops.appendleft(op)
        return op

Y
Yu Yang 已提交
282 283

class Program(object):
Y
Yu Yang 已提交
284 285 286 287 288 289 290 291
    @classmethod
    def instance(cls):
        # From https://stackoverflow.com/questions/8212053
        # Making Program as a Singleton class.
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

Y
Yu Yang 已提交
292
    def __init__(self):
Y
Yu Yang 已提交
293 294
        assert not hasattr(self.__class__,
                           '_instance'), 'Do not call constructor directly!'
F
fengjiayi 已提交
295
        self.desc = core.ProgramDesc.instance()
Y
Yu Yang 已提交
296 297 298 299 300 301 302 303 304 305 306
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0

    def global_block(self):
        return self.blocks[0]

    def current_block(self):
        return self.blocks[self.current_block_idx]

    def create_block(self):
        new_block_idx = len(self.blocks)
F
fengjiayi 已提交
307
        self.desc.append_block(self.current_block().desc)
Y
Yu Yang 已提交
308 309 310 311 312 313 314 315
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx


Y
Yu Yang 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")

        Variable.__init__(self, block, shape=shape, dtype=dtype, **kwargs)
        self.trainable = kwargs.get('trainable', True)
        self.init_attr = kwargs.get('initialize_attr', {
            'type': 'uniform_random',
            'min': -1.0,
            'max': 1.0
        })

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})
        self._append_initialize_ops_()

    def _append_initialize_ops_(self):
        attr = copy.deepcopy(self.init_attr)
        op_type = attr.pop('type', None)
        block = self.block
        assert isinstance(block, Block)
        shape = self.shape
        attr['dims'] = shape
        attr['data_type'] = int(self.data_type)
        op = block.prepend_op(
            type=op_type, inputs=None, outputs={'Out': [self]}, attrs=attr)
        self.op = op


Y
Yu Yang 已提交
352
# program is a global instance.
Y
Yu Yang 已提交
353
g_program = Program.instance()