test_multiprocess_dataloader_dynamic.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import six
import time
import unittest
import numpy as np

import paddle.fluid as fluid
22
from paddle.io import DataLoader
23 24
from paddle.fluid.dygraph.nn import Linear

25
from test_multiprocess_dataloader_static import RandomDataset, RandomBatchedDataset, prepare_places
26
from test_multiprocess_dataloader_static import EPOCH_NUM, BATCH_SIZE, IMAGE_SIZE, SAMPLE_NUM, CLASS_NUM
27 28 29


class SimpleFCNet(fluid.dygraph.Layer):
30

31 32 33 34 35 36 37 38 39 40 41
    def __init__(self):
        super(SimpleFCNet, self).__init__()

        param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.8))
        bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.5))
        self._fcs = []
        in_channel = IMAGE_SIZE
        for hidden_size in [10, 20, 30]:
            self._fcs.append(
42 43 44 45 46
                Linear(in_channel,
                       hidden_size,
                       act='tanh',
                       param_attr=param_attr,
                       bias_attr=bias_attr))
47 48
            in_channel = hidden_size
        self._fcs.append(
49 50 51 52 53
            Linear(in_channel,
                   CLASS_NUM,
                   act='softmax',
                   param_attr=param_attr,
                   bias_attr=bias_attr))
54 55 56 57 58 59 60 61 62

    def forward(self, image):
        out = image
        for fc in self._fcs:
            out = fc(out)
        return out


class TestDygraphDataLoader(unittest.TestCase):
63

K
Kaipeng Deng 已提交
64
    def run_main(self, num_workers, places, persistent_workers):
65 66 67 68 69 70 71
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        with fluid.dygraph.guard(places[0]):
            fc_net = SimpleFCNet()
            optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
72 73 74 75 76
            dataloader = DataLoader(dataset,
                                    num_workers=num_workers,
                                    batch_size=BATCH_SIZE,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for image, label in dataloader():
                    out = fc_net(image)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.reduce_mean(loss)
                    avg_loss.backward()
                    optimizer.minimize(avg_loss)
                    fc_net.clear_gradients()

                    loss_list.append(np.mean(avg_loss.numpy()))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
        # dynamic graph do not run with_data_parallel
        for p in prepare_places(False):
K
Kaipeng Deng 已提交
108 109 110 111 112 113
            for persistent_workers in [False, True]:
                results = []
                for num_workers in [0, 2]:
                    print(self.__class__.__name__, p, num_workers,
                          persistent_workers)
                    sys.stdout.flush()
114 115 116
                    ret = self.run_main(num_workers=num_workers,
                                        places=p,
                                        persistent_workers=persistent_workers)
K
Kaipeng Deng 已提交
117 118 119 120 121
                    results.append(ret)
                diff = np.max(
                    np.abs(results[0]['loss'] - results[1]['loss']) /
                    np.abs(results[0]['loss']))
                self.assertLess(diff, 1e-2)
122 123


124
class TestDygraphDataLoaderWithBatchedDataset(TestDygraphDataLoader):
125

K
Kaipeng Deng 已提交
126
    def run_main(self, num_workers, places, persistent_workers):
127 128 129 130 131 132 133
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        with fluid.dygraph.guard(places[0]):
            fc_net = SimpleFCNet()
            optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
134 135 136 137 138
            dataloader = DataLoader(dataset,
                                    num_workers=num_workers,
                                    batch_size=None,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            step_list = []
            loss_list = []
            start_t = time.time()
            for _ in six.moves.range(EPOCH_NUM):
                step = 0
                for image, label in dataloader():
                    out = fc_net(image)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.reduce_mean(loss)
                    avg_loss.backward()
                    optimizer.minimize(avg_loss)
                    fc_net.clear_gradients()

                    loss_list.append(np.mean(avg_loss.numpy()))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


168 169
if __name__ == '__main__':
    unittest.main()