requantize_mkldnn_op.cc 6.1 KB
Newer Older
X
xiaolil1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "dnnl.hpp"
X
xiaolil1 已提交
16 17 18 19 20 21 22 23
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/requantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

24 25
using dnnl::memory;
using dnnl::reorder;
X
xiaolil1 已提交
26 27 28
using platform::to_void_cast;
using Tensor = framework::Tensor;

29 30 31 32 33 34 35 36
namespace {

inline uint8_t clip_to_uint8(float x) {
  return std::max(0L, std::min(255L, std::lround(x)));
}

}  // namespace

X
xiaolil1 已提交
37 38 39 40 41 42
template <typename T>
class ReQuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_in = ctx.Attr<float>("Scale_in");
43
    auto shift_in = ctx.Attr<float>("Shift_in");
X
xiaolil1 已提交
44
    auto scale_out = ctx.Attr<float>("Scale_out");
45 46
    auto shift_out = ctx.Attr<float>("Shift_out");
    bool with_shift = shift_in != 0.0f || shift_out != 0.0f;
X
xiaolil1 已提交
47
    auto* output = ctx.Output<Tensor>("Output");
48 49 50 51 52 53 54

    PADDLE_ENFORCE_NE(scale_in, 0.0f, platform::errors::InvalidArgument(
                                          "Scale of input cannot be 0.0"));
    PADDLE_ENFORCE_NE(scale_out, 0.0f, platform::errors::InvalidArgument(
                                           "Scale of output cannot be 0.0"));
    if (shift_in != 0.0f) {
      PADDLE_ENFORCE_EQ(
55 56
          framework::TransToProtoVarType(input->dtype()),
          framework::proto::VarType::UINT8,
57 58 59 60
          platform::errors::Unimplemented("Requantize does not support nonzero "
                                          "shift for signed input."));
    }

X
xiaolil1 已提交
61 62 63 64
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

65
    auto src_tz = paddle::framework::vectorize(input->dims());
X
xiaolil1 已提交
66

67 68
    float reorder_scale = scale_out / scale_in;

69 70 71
    std::string key = platform::CreateKey(dev_ctx, src_tz, scale_in, scale_out,
                                          ctx.OutputName("Output"));
    key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
72 73 74
    const std::string key_prim = key + "@r";
    const std::string key_src_mem = key + "@s";
    const std::string key_dst_mem = key + "@d";
X
xiaolil1 已提交
75

76 77 78 79
    std::shared_ptr<dnnl::memory> src_memory;
    std::shared_ptr<dnnl::memory> dst_memory;
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));
X
xiaolil1 已提交
80

81
    const T* input_data = input->data<T>();
A
Adam 已提交
82

83
    if (reorder_p == nullptr) {
84
      auto dst_tz = framework::vectorize(output->dims());
85 86
      auto src_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(input->dtype()));
87
      auto dst_dt = with_shift ? framework::MKLDNNDataType::u8 : src_dt;
88

89
      auto src_md = platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
90 91
      src_memory = std::make_shared<dnnl::memory>(src_md, engine,
                                                  to_void_cast<T>(input_data));
92
      auto dst_md = platform::MKLDNNMemDesc({dst_tz}, dst_dt, input->format());
93 94 95 96 97

      dnnl::primitive_attr attri;
      int mask = 0;
      attri.set_output_scales(mask, {reorder_scale});
      if (with_shift) {
98
        dnnl::post_ops post_operations;
99 100 101 102 103 104 105 106 107 108 109 110 111
        post_operations.append_sum();
        attri.set_post_ops(post_operations);
        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
        uint8_t reorder_shift =
            clip_to_uint8(shift_out - reorder_scale * shift_in);
        std::memset(output_data, reorder_shift, output->numel());
        dst_memory = std::make_shared<dnnl::memory>(
            dst_md, engine, to_void_cast<uint8_t>(output_data));
      } else {
        T* output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory = std::make_shared<dnnl::memory>(
            dst_md, engine, to_void_cast<T>(output_data));
      }
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

      auto reorder_pd =
          reorder::primitive_desc(*src_memory, *dst_memory, attri);
      reorder_p = std::make_shared<reorder>(reorder_pd);

      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
    } else {
      src_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory =
          std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_dst_mem));
127 128 129 130 131 132 133 134 135 136 137
      if (with_shift) {
        uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
        uint8_t reorder_shift =
            clip_to_uint8(shift_out - reorder_scale * shift_in);
        std::memset(output_data, reorder_shift, output->numel());
        dst_memory->set_data_handle(output_data);

      } else {
        T* output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory->set_data_handle(output_data);
      }
138 139
    }

140
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
141 142 143 144 145 146
    {
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder_p->execute(astream, *src_memory, *dst_memory);
      astream.wait();
    }
X
xiaolil1 已提交
147

148 149
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
X
xiaolil1 已提交
150 151 152 153 154 155 156 157 158
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(requantize, MKLDNN, ::paddle::platform::CPUPlace,
159 160
                   ops::ReQuantOpKernel<int8_t>, ops::ReQuantOpKernel<uint8_t>,
                   ops::ReQuantOpKernel<paddle::platform::bfloat16>);