gelu_op_plugin.cu 2.7 KB
Newer Older
P
Pei Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cassert>
#include <cstring>
#include <vector>
#include "paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

// constants for approximating the normal cdf
constexpr float A = 1.41421356237309504;  // sqrt(2)

GeluPlugin* CreateGeluPluginDeserialize(const void* buffer, size_t length) {
  return new GeluPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("gelu plugin", CreateGeluPluginDeserialize);

nvinfer1::Dims GeluPlugin::getOutputDimensions(int index,
                                               const nvinfer1::Dims* in_dims,
                                               int nb_inputs) {
  assert(nb_inputs == 1);
  assert(index < this->getNbOutputs());
  nvinfer1::Dims const& input_dims = in_dims[0];
  nvinfer1::Dims output_dims = input_dims;
  return output_dims;
}

template <typename T, unsigned TPB>
__global__ void geluKernel(const T a, int n, const T* input, T* output) {
  const int idx = blockIdx.x * TPB + threadIdx.x;
  if (idx < n) {
    const T in = input[idx];
    const T cdf = 0.5 * (1.0 + erf(in * 0.5 * a));
    output[idx] = in * cdf;
  }
}

int computeGelu(cudaStream_t stream, int n, const float* input, float* output) {
  constexpr int blockSize = 256;
  const int gridSize = (n + blockSize - 1) / blockSize;
  geluKernel<float, blockSize><<<gridSize, blockSize, 0, stream>>>(A, n, input,
                                                                   output);
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(ERROR) << cudaGetErrorString(error);
  return 0;
}

int GeluPlugin::enqueue(int batchSize, const void* const* inputs,
                        void** outputs, void*, cudaStream_t stream) {
  int status = -1;
  const float* input = static_cast<const float*>(inputs[0]);
  float* output = static_cast<float*>(outputs[0]);
  status = computeGelu(stream, input_volume_ * batchSize, input, output);
  return status;
}

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle