top_k_function_cuda.h 18.4 KB
Newer Older
W
wawltor 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <stdio.h>
#include <cstdio>
#include <vector>
19
#ifdef __NVCC__
W
wawltor 已提交
20
#include "cub/cub.cuh"
21 22 23 24
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif
25
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wawltor 已提交
26
#include "paddle/fluid/operators/top_k_op.h"
27
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
W
wawltor 已提交
28 29
#include "paddle/fluid/platform/float16.h"

30 31 32 33 34 35 36 37 38 39
#ifdef __HIPCC__
namespace rocprim {
namespace detail {
template <>
struct radix_key_codec_base<paddle::platform::float16>
    : radix_key_codec_integral<paddle::platform::float16, uint16_t> {};
}  // namespace detail
}  // namespace rocprim
namespace cub = hipcub;
#else
W
wawltor 已提交
40 41 42 43 44 45 46
// set cub base traits in order to handle float16
namespace cub {
template <>
struct NumericTraits<paddle::platform::float16>
    : BaseTraits<FLOATING_POINT, true, false, uint16_t,
                 paddle::platform::float16> {};
}  // namespace cub
47
#endif
W
wawltor 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

struct SegmentOffsetIter {
  EIGEN_DEVICE_FUNC
  explicit SegmentOffsetIter(int num_cols) : num_cols_(num_cols) {}

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(int idx) const {
    return idx * num_cols_;
  }

  int num_cols_;
};

// Iter using into a column
struct ColumnIndexIter {
  explicit ColumnIndexIter(int num_cols) : num_cols_(num_cols) {}

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator()(
      const Eigen::array<int, 1>& ix) const {
    return ix[0] % num_cols_;
  }

  int num_cols_;
};

inline static int GetDesiredBlockDim(int dim) {
  if (dim > 128) {
    return 256;
  } else if (dim > 64) {
    return 128;
  } else if (dim > 32) {
    return 64;
  } else {
    return 32;
  }
}

template <typename T>
__global__ void InitIndex(T* indices, T num_rows, T num_cols) {
  int col_id = threadIdx.x;
  int row_id = blockIdx.x;

  for (int64_t j = row_id; j < num_rows; j += gridDim.x) {
    for (int64_t i = col_id; i < num_cols; i += blockDim.x) {
      indices[j * num_cols + i] = i;
    }
  }
}

template <typename T>
struct Pair {
  __device__ __forceinline__ Pair() {}
  __device__ __forceinline__ Pair(T value, int64_t id) : v(value), id(id) {}

  __device__ __forceinline__ void set(T value, int64_t id) {
    v = value;
    id = id;
  }

  __device__ __forceinline__ void operator=(const Pair<T>& in) {
    v = in.v;
    id = in.id;
  }

  __device__ __forceinline__ bool operator<(const T value) const {
    return (v < value);
  }

  __device__ __forceinline__ bool operator>(const T value) const {
    return (v > value);
  }
  __device__ __forceinline__ bool operator<(const Pair<T>& in) const {
    return (v < in.v) || ((v == in.v) && (id > in.id));
  }

  __device__ __forceinline__ bool operator>(const Pair<T>& in) const {
    return (v > in.v) || ((v == in.v) && (id < in.id));
  }

  T v;
  int64_t id;
};

template <typename T>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p,
                                      int beam_size, const bool& largest) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (largest) {
      if (topk[k] < p) {
        topk[k + 1] = topk[k];
      } else {
        topk[k + 1] = p;
        return;
      }
    } else {
      if (topk[k] > p) {
        topk[k + 1] = topk[k];
      } else {
        topk[k + 1] = p;
        return;
      }
    }
  }
  topk[0] = p;
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, int beam_size,
                                        const bool& largest) {
  while (idx < dim) {
    if (largest) {
      if (topk[beam_size - 1] < src[idx]) {
        Pair<T> tmp(src[idx], idx);
        AddTo<T>(topk, tmp, beam_size, largest);
      }
    } else {
      if (topk[beam_size - 1] > src[idx]) {
        Pair<T> tmp(src[idx], idx);
        AddTo<T>(topk, tmp, beam_size, largest);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, const Pair<T>& max,
                                        int beam_size, const bool& largest) {
  while (idx < dim) {
    if (largest) {
      if (topk[beam_size - 1] < src[idx]) {
        Pair<T> tmp(src[idx], idx);
        if (tmp < max) {
          AddTo<T>(topk, tmp, beam_size, largest);
        }
      }
    } else {
      if (topk[beam_size - 1] > src[idx]) {
        Pair<T> tmp(src[idx], idx);
        if (tmp > max) {
          AddTo<T>(topk, tmp, beam_size, largest);
        }
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
                                              int beam_size, const T* src,
                                              bool* firstStep, bool* is_empty,
                                              Pair<T>* max, int dim,
                                              const int tid, bool largest) {
  if (*beam > 0) {
    int length = (*beam) < beam_size ? *beam : beam_size;
    if (*firstStep) {
      *firstStep = false;
      GetTopK<T, BlockSize>(topk, src, tid, dim, length, largest);
    } else {
      for (int k = 0; k < MaxLength; k++) {
        if (k < MaxLength - (*beam)) {
          topk[k] = topk[k + *beam];
        } else {
          topk[k].set(-static_cast<T>(INFINITY), -1);
        }
      }
      if (!(*is_empty)) {
        GetTopK<T, BlockSize>(topk + MaxLength - *beam, src, tid, dim, *max,
                              length, largest);
      }
    }

    *max = topk[MaxLength - 1];
    if ((*max).v == -static_cast<T>(1)) *is_empty = true;
    *beam = 0;
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
                                            Pair<T> topk[], T** topVal,
                                            int64_t** topIds, int* beam, int* k,
                                            const int tid, const int warp,
                                            const bool& largest) {
  while (true) {
    __syncthreads();
    if (tid < BlockSize / 2) {
      if (largest) {
        if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) {
          maxid[tid] = tid + BlockSize / 2;
        } else {
          maxid[tid] = tid;
        }
      } else {
        if (sh_topk[tid] > sh_topk[tid + BlockSize / 2]) {
          maxid[tid] = tid + BlockSize / 2;
        } else {
          maxid[tid] = tid;
        }
      }
    }
    __syncthreads();
    for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) {
      if (tid < stride) {
        if (largest) {
          if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) {
            maxid[tid] = maxid[tid + stride];
          }
        } else {
          if (sh_topk[maxid[tid]] > sh_topk[maxid[tid + stride]]) {
            maxid[tid] = maxid[tid + stride];
          }
        }
      }
      __syncthreads();
    }
    __syncthreads();

    if (tid == 0) {
      **topVal = sh_topk[maxid[0]].v;
      **topIds = sh_topk[maxid[0]].id;
      (*topVal)++;
      (*topIds)++;
    }
    if (tid == maxid[0]) (*beam)++;
    if (--(*k) == 0) break;
    __syncthreads();

    if (tid == maxid[0]) {
      if (*beam < MaxLength) {
        sh_topk[tid] = topk[*beam];
      }
    }
    // NOTE(zcd): temporary solution
    unsigned mask = 0u;
    CREATE_SHFL_MASK(mask, true);

    if (maxid[0] / 32 == warp) {
      if (platform::CudaShuffleSync(mask, *beam, (maxid[0]) % 32, 32) ==
          MaxLength)
        break;
    }
  }
}

/**
 * Each block compute one sample.
 * In a block:
 * 1. every thread get top MaxLength value;
 * 2. merge to sh_topk, block reduce and get max value;
 * 3. go to the second setp, until one thread's topk value is null;
 * 4. go to the first setp, until get the topk value.
 */

template <typename T, int MaxLength, int BlockSize>
__global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
                             const T* src, int lds, int dim, int k,
                             int grid_dim, int num, bool largest = true) {
  __shared__ Pair<T> sh_topk[BlockSize];
  const int tid = threadIdx.x;
  const int warp = threadIdx.x / 32;

  const int bid = blockIdx.x;
  for (int i = bid; i < num; i += grid_dim) {
    int top_num = k;
    __shared__ int maxid[BlockSize / 2];
    T* out = output + i * output_stride;
    int64_t* inds = indices + i * k;
    Pair<T> topk[MaxLength];
    int beam = MaxLength;
    Pair<T> max;
    bool is_empty = false;
    bool firststep = true;

    for (int j = 0; j < MaxLength; j++) {
      if (largest) {
        topk[j].set(-static_cast<T>(INFINITY), -1);
      } else {
        topk[j].set(static_cast<T>(INFINITY), -1);
      }
    }
    while (top_num) {
      ThreadGetTopK<T, MaxLength, BlockSize>(topk, &beam, k, src + i * lds,
                                             &firststep, &is_empty, &max, dim,
                                             tid, largest);

      sh_topk[tid] = topk[0];
      BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &out, &inds,
                                           &beam, &top_num, tid, warp, largest);
    }
  }
}

template <typename T, int MaxLength, int BlockSize>
__global__ void AssignGrad(T* x_grad, const int64_t* indices, const T* out_grad,
                           size_t rows, size_t cols, size_t k) {
  for (size_t i = 0; i < rows; ++i) {
    for (size_t j = 0; j < cols; ++j) {
      x_grad[i * cols + j] = 0;
    }
W
wawltor 已提交
355
    __syncthreads();
W
wawltor 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369
    for (size_t j = 0; j < k; ++j) {
      size_t idx = indices[i * k + j];
      x_grad[i * cols + idx] = out_grad[i * k + j];
    }
  }
}

// the grad assign with the axis
template <typename T>
__global__ void AssignGradWithAxis(const T* grad_out, const int64_t* indices,
                                   T* grad_in, int pre, int post,
                                   int raw_height, int k) {
  // raw_height is the length of topk axis
  for (int i = blockIdx.x; i < pre; i += gridDim.x) {
W
wawltor 已提交
370 371
    int base_index = i * post * k;
    int base_grad = i * post * raw_height;
W
wawltor 已提交
372 373 374
    for (int j = threadIdx.x; j < raw_height * post; j += blockDim.x) {
      grad_in[base_grad + j] = static_cast<T>(0);
    }
W
wawltor 已提交
375
    __syncthreads();
W
wawltor 已提交
376
    for (int j = threadIdx.x; j < k * post; j += blockDim.x) {
W
wawltor 已提交
377 378 379
      int64_t idx_ij = indices[base_index + j];
      int64_t in_ij = base_grad + (idx_ij * post) + (j % post);
      grad_in[in_ij] = grad_out[base_index + j];
W
wawltor 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393
    }
  }
}
// use the radix sort for the topk
template <typename T>
bool SortTopk(const platform::CUDADeviceContext& ctx,
              const framework::Tensor* input_tensor, const int64_t num_cols,
              const int64_t num_rows, const int k,
              framework::Tensor* out_tensor, framework::Tensor* indices_tensor,
              bool largest = true) {
  auto cu_stream = ctx.stream();

  Tensor input_indices;
  const std::vector<int64_t> dims = {num_rows, num_cols};
394
  auto dim = phi::make_ddim(dims);
W
wawltor 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
  input_indices.Resize(dim);
  // input_indices.Resize(num_rows*num_cols);
  input_indices.mutable_data<int64_t>(ctx.GetPlace());
  size_t temp_storage_bytes = -1;

  auto ComputeBlockSize = [](int col) {
    if (col > 512)
      return 1024;
    else if (col > 256 && col <= 512)
      return 512;
    else if (col > 128 && col <= 256)
      return 256;
    else if (col > 64 && col <= 128)
      return 128;
    else
      return 64;
  };
  int block_size = ComputeBlockSize(num_cols);

W
Wilber 已提交
414
  unsigned int maxGridDimX = ctx.GetCUDAMaxGridDimSize()[0];
W
wawltor 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
  // actually, int num_rows < max_grid_size
  unsigned int grid_size = num_rows < maxGridDimX
                               ? static_cast<unsigned int>(num_rows)
                               : maxGridDimX;
  // Init a index array
  InitIndex<int64_t><<<grid_size, block_size, 0, cu_stream>>>(
      input_indices.data<int64_t>(), num_rows, num_cols);

  // create iter for counting input
  cub::CountingInputIterator<int64_t> counting_iter(0);
  // segment_offset is used for move to next row
  cub::TransformInputIterator<int64_t, SegmentOffsetIter,
                              cub::CountingInputIterator<int64_t>>
      segment_offsets_t(counting_iter, SegmentOffsetIter(num_cols));

  T* sorted_values_ptr;
  int64_t* sorted_indices_ptr;

  Tensor temp_values;
  Tensor temp_indices;

  const T* input = input_tensor->data<T>();
  T* values = out_tensor->data<T>();
  int64_t* indices = indices_tensor->mutable_data<int64_t>(ctx.GetPlace());

  if (k == num_cols) {
    // Doing a full sort.
    sorted_values_ptr = values;
    sorted_indices_ptr = indices;
  } else {
    temp_values.Resize(dim);
    temp_indices.Resize(dim);
    sorted_values_ptr = temp_values.mutable_data<T>(ctx.GetPlace());
    sorted_indices_ptr = temp_indices.mutable_data<int64_t>(ctx.GetPlace());
  }

  // Get temp storage buffer size, maybe can allocate a fixed buffer to save
  // time.
  if (largest) {
    auto err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
        nullptr, temp_storage_bytes, input, sorted_values_ptr,
        input_indices.data<int64_t>(), sorted_indices_ptr, num_cols * num_rows,
        num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
        cu_stream);
459 460 461 462 463 464 465 466 467 468
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairsDescending to "
                    "calculate "
                    "temp_storage_bytes, status: "
                 << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
469 470 471 472 473 474 475 476
    if (err != cudaSuccess) {
      LOG(ERROR)
          << "TopKOP failed as could not launch "
             "cub::DeviceSegmentedRadixSort::SortPairsDescending to calculate "
             "temp_storage_bytes, status: "
          << cudaGetErrorString(err);
      return false;
    }
477
#endif
W
wawltor 已提交
478 479 480 481 482 483
  } else {
    auto err = cub::DeviceSegmentedRadixSort::SortPairs(
        nullptr, temp_storage_bytes, input, sorted_values_ptr,
        input_indices.data<int64_t>(), sorted_indices_ptr, num_cols * num_rows,
        num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
        cu_stream);
484 485 486 487 488 489 490 491 492
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairs to calculate "
                    "temp_storage_bytes, status: "
                 << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
493 494 495 496 497 498 499
    if (err != cudaSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "cub::DeviceSegmentedRadixSort::SortPairs to calculate "
                    "temp_storage_bytes, status: "
                 << cudaGetErrorString(err);
      return false;
    }
500
#endif
W
wawltor 已提交
501 502 503 504 505 506 507 508 509 510
  }
  Tensor temp_storage;
  temp_storage.mutable_data<uint8_t>(ctx.GetPlace(), temp_storage_bytes);

  if (largest) {
    auto err = cub::DeviceSegmentedRadixSort::SortPairsDescending(
        temp_storage.data<uint8_t>(), temp_storage_bytes, input,
        sorted_values_ptr, input_indices.data<int64_t>(), sorted_indices_ptr,
        num_cols * num_rows, num_rows, segment_offsets_t, segment_offsets_t + 1,
        0, sizeof(T) * 8, cu_stream);
511 512 513 514 515 516 517 518 519 520 521
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairsDescending to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
522 523 524 525 526 527 528 529 530
    if (err != cudaSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "cub::DeviceSegmentedRadixSort::SortPairsDescending to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << cudaGetErrorString(err);
      return false;
    }
531
#endif
W
wawltor 已提交
532 533 534 535 536 537
  } else {
    auto err = cub::DeviceSegmentedRadixSort::SortPairs(
        temp_storage.data<uint8_t>(), temp_storage_bytes, input,
        sorted_values_ptr, input_indices.data<int64_t>(), sorted_indices_ptr,
        num_cols * num_rows, num_rows, segment_offsets_t, segment_offsets_t + 1,
        0, sizeof(T) * 8, cu_stream);
538 539 540 541 542 543 544 545 546 547 548
#ifdef __HIPCC__
    if (err != hipSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "hipcub::DeviceSegmentedRadixSort::SortPairs to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << hipGetErrorString(err);
      return false;
    }
#else
W
wawltor 已提交
549 550 551 552 553 554 555 556 557
    if (err != cudaSuccess) {
      LOG(ERROR) << "TopKOP failed as could not launch "
                    "cub::DeviceSegmentedRadixSort::SortPairs to "
                    "sort input, "
                    "temp_storage_bytes: "
                 << temp_storage_bytes
                 << ", status: " << cudaGetErrorString(err);
      return false;
    }
558
#endif
W
wawltor 已提交
559 560 561 562 563 564
  }
  auto& dev = *ctx.eigen_device();
  if (k < num_cols) {
    // copy sliced data to output.
    const Eigen::DSizes<Eigen::DenseIndex, 2> slice_indices{0, 0};
    const Eigen::DSizes<Eigen::DenseIndex, 2> slice_sizes{num_rows, k};
W
wuhuanzhou 已提交
565 566
    auto e_indices =
        framework::EigenMatrix<int64_t>::From(*indices_tensor, dim);
567 568
    auto e_tmp_indices = framework::EigenMatrix<int64_t>::From(
        static_cast<const Tensor>(temp_indices));
W
wawltor 已提交
569 570

    std::vector<int> odims = {static_cast<int>(num_rows), static_cast<int>(k)};
571
    auto dim = phi::make_ddim(odims);
W
wuhuanzhou 已提交
572
    auto e_values = framework::EigenMatrix<T>::From(*out_tensor, dim);
573 574
    auto e_tmp_values =
        framework::EigenMatrix<T>::From(static_cast<const Tensor>(temp_values));
W
wawltor 已提交
575

576 577 578 579
    EigenSlice<std::decay_t<decltype(dev)>, int64_t, 2>::Eval(
        dev, e_indices, e_tmp_indices, slice_indices, slice_sizes);
    EigenSlice<std::decay_t<decltype(dev)>, T, 2>::Eval(
        dev, e_values, e_tmp_values, slice_indices, slice_sizes);
W
wawltor 已提交
580 581 582 583 584
  }
  return true;
}
}  // namespace operators
}  // namespace paddle