values_vectors_functor.h 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/memory/memory.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/phi/backends/dynload/cusolver.h"
#endif  // PADDLE_WITH_CUDA
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
#include "paddle/phi/kernels/transpose_kernel.h"

namespace phi {
namespace funcs {

inline int64_t GetBatchSize(phi::DDim dims) {
  int64_t batch_size = 1;
  auto dim_size = dims.size();
  for (int i = 0; i < dim_size - 2; i++) {
    batch_size *= dims[i];
  }
  return batch_size;
}

static void CheckEighResult(const int batch, const int info) {
  PADDLE_ENFORCE_LE(
      info,
      0,
      phi::errors::PreconditionNotMet(
          "For batch [%d]: the [%d] off-diagonal elements of an intermediate"
          "tridiagonal form did not converge to zero",
          batch,
          info));
  PADDLE_ENFORCE_GE(
      info,
      0,
      phi::errors::PreconditionNotMet(
          "For batch [%d]: the [%d] argument had an illegal value",
          batch,
          info));
}

template <typename DeviceContext, typename T>
struct MatrixEighFunctor {
  void operator()(const DeviceContext &dev_ctx,
                  const DenseTensor &input,
                  DenseTensor *eigen_values,
                  DenseTensor *eigen_vectors,
                  bool is_lower,
                  bool has_vectors);
};

// Calculates the eigenvalues ​​and eigenvectors of Hermitian or real
// symmetric matrices, and uses the variable has_vectors to
// control whether to return the eigenvectors.
template <typename T>
struct MatrixEighFunctor<CPUContext, T> {
 public:
  void operator()(const CPUContext &dev_ctx,
                  const DenseTensor &input,
                  DenseTensor *eigen_values,
                  DenseTensor *eigen_vectors,
                  bool is_lower,
                  bool has_vectors) {
    using ValueType = phi::dtype::Real<T>;
    ValueType *out_value = dev_ctx.template Alloc<ValueType>(eigen_values);

    DenseTensor input_trans;
    // lapack is a column-major storge, transpose make the input to
    // have a continuous memory layout
    input_trans = phi::TransposeLast2Dim<T>(dev_ctx, input);
    T *input_vector = input_trans.data<T>();

    auto dims = input.dims();
    int dim_size = dims.size();
    int64_t batch_size = GetBatchSize(dims);

    int vector_stride = dims[dim_size - 1] * dims[dim_size - 2];
    int values_stride = dims[dim_size - 1];
    char uplo = is_lower ? 'L' : 'U';
    char jobz = has_vectors ? 'V' : 'N';
    int n = dims[dim_size - 1];
    int64_t lda = std::max<int64_t>(1, n);
    // if work = -1, it means that you need to use the lapack function to query
    // the optimal value
    int lwork = -1;      // The length of the array work
    int lrwork = -1;     // The dimension of the array rwork,rwork is REAL array
    int liwork = -1;     // The dimension of the array iwork
    int iwork_opt = -1;  // The optimal length of the array liwork
    T lwork_opt = static_cast<T>(-1);  // The optimal length of the array work
    ValueType rwork_opt =
        static_cast<ValueType>(-1);  // The optimal length of the array rwork

    int info = 0;
    // Call lapackEigh to get the optimal size of work data
    phi::funcs::lapackEigh<T, ValueType>(jobz,
                                         uplo,
                                         n,
                                         input_vector,
                                         lda,
                                         out_value,
                                         &lwork_opt,
                                         lwork,
                                         &rwork_opt,
                                         lrwork,
                                         &iwork_opt,
                                         liwork,
                                         &info);
    lwork = std::max<int>(1, static_cast<int>(lwork_opt));
    liwork = std::max<int>(1, iwork_opt);

    DenseTensor rwork_tensor;
    ValueType *rwork_data = nullptr;

    // complex type
    if (input.type() == phi::DataType::COMPLEX64 ||
        input.type() == phi::DataType::COMPLEX128) {
      lrwork = std::max<int>(1, static_cast<int>(rwork_opt));

      rwork_tensor.Resize(phi::make_ddim({lrwork}));
      rwork_data = dev_ctx.template Alloc<ValueType>(&rwork_tensor);
    }

    DenseTensor iwork_tensor, work_tensor;

    iwork_tensor.Resize(phi::make_ddim({liwork}));
    int *iwork_data = dev_ctx.template Alloc<int>(&iwork_tensor);

    work_tensor.Resize(phi::make_ddim({lwork}));
    T *work_data = dev_ctx.template Alloc<T>(&work_tensor);

    for (auto i = 0; i < batch_size; i++) {
      auto *value_data = out_value + i * values_stride;
      auto *input_data = input_vector + i * vector_stride;
      phi::funcs::lapackEigh<T, ValueType>(jobz,
                                           uplo,
                                           n,
                                           input_data,
                                           lda,
                                           value_data,
                                           work_data,
                                           lwork,
                                           rwork_data,
                                           lrwork,
                                           iwork_data,
                                           liwork,
                                           &info);
      CheckEighResult(i, info);
    }
    if (has_vectors) {
      PADDLE_ENFORCE_NOT_NULL(eigen_vectors,
                              phi::errors::InvalidArgument(
                                  "When has_vectors is true,"
                                  "the eigenvectors needs to be calculated, "
                                  "so the eigenvectors must be provided."));
      input_trans = phi::TransposeLast2Dim<T>(dev_ctx, input_trans);
      eigen_vectors->ShareDataWith(input_trans);
    }
  }
};

#ifdef PADDLE_WITH_CUDA

// Calculates the eigenvalues ​​and eigenvectors of Hermitian or real
// symmetric matrices on GPU, and uses the variable has_vectors
// to control whether to return the eigenvectors.
template <typename T>
struct MatrixEighFunctor<GPUContext, T> {
 public:
  void operator()(const GPUContext &dev_ctx,
                  const DenseTensor &input,
                  DenseTensor *eigen_values,
                  DenseTensor *eigen_vectors,
                  bool is_lower,
                  bool has_vectors) {
    using ValueType = phi::dtype::Real<T>;
    ValueType *out_value = dev_ctx.template Alloc<ValueType>(eigen_values);

    DenseTensor input_trans;
    input_trans = phi::TransposeLast2Dim<T>(dev_ctx, input);
    T *input_vector = input_trans.data<T>();
    auto &dims = input.dims();
    int dim_size = dims.size();
    int64_t batch_size = GetBatchSize(dims);

    cublasFillMode_t uplo =
        is_lower ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER;
    cusolverEigMode_t jobz =
        has_vectors ? CUSOLVER_EIG_MODE_VECTOR : CUSOLVER_EIG_MODE_NOVECTOR;

    int n = dims[dim_size - 1];
    int lda = std::max<int>(1, n);
    auto vector_stride = dims[dim_size - 1] * dims[dim_size - 2];
    auto values_stride = dims[dim_size - 1];
    int lwork = 0;
    auto info = paddle::memory::Alloc(dev_ctx, sizeof(int) * batch_size);
    auto *info_ptr = reinterpret_cast<int *>(info->ptr());

    // When the input type is float32, and the feature value input dimension
    // is greater than or equal to [*,32,32]  and less than or equal to
    // [*,512,512], Syevj has better performance.
    bool use_syevj = (input.dtype() == phi::DataType::FLOAT32 &&
                      values_stride >= 32 && values_stride <= 512);
    syevjInfo_t syevj_params;
    if (use_syevj) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          dynload::cusolverDnCreateSyevjInfo(&syevj_params));
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnSsyevj_bufferSize(
          dev_ctx.cusolver_dn_handle(),
          jobz,
          uplo,
          n,
          reinterpret_cast<const float *>(input_vector),
          lda,
          reinterpret_cast<const float *>(out_value),
          &lwork,
          syevj_params));
    } else {
      EvdBuffer(dev_ctx.cusolver_dn_handle(),
                jobz,
                uplo,
                n,
                input_vector,
                lda,
                out_value,
                &lwork);
    }
    auto work = paddle::memory::Alloc(dev_ctx, sizeof(T) * lwork);
    auto *work_ptr = reinterpret_cast<T *>(work->ptr());
    for (auto i = 0; i < batch_size; i++) {
      auto *input_data = input_vector + i * vector_stride;
      auto *value_data = out_value + i * values_stride;
      auto handle = dev_ctx.cusolver_dn_handle();
      if (use_syevj) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            dynload::cusolverDnSsyevj(handle,
                                      jobz,
                                      uplo,
                                      n,
                                      reinterpret_cast<float *>(input_data),
                                      lda,
                                      reinterpret_cast<float *>(value_data),
                                      reinterpret_cast<float *>(work_ptr),
                                      lwork,
                                      info_ptr,
                                      syevj_params));
      } else {
        Evd(handle,
            jobz,
            uplo,
            n,
            input_data,
            lda,
            value_data,
            work_ptr,
            lwork,
            info_ptr);
      }
      int error_info = 0;
      paddle::memory::Copy(phi::CPUPlace(),
                           &error_info,
                           dev_ctx.GetPlace(),
                           info_ptr,
                           sizeof(int),
                           dev_ctx.stream());
      CheckEighResult(i, error_info);
    }

    if (use_syevj) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          dynload::cusolverDnDestroySyevjInfo(syevj_params));
    }
    if (has_vectors) {
      PADDLE_ENFORCE_NOT_NULL(eigen_vectors,
                              phi::errors::InvalidArgument(
                                  "When has_vectors is true,"
                                  "the eigenvectors needs to be calculated,"
                                  "so the eigenvectors must be provided."));
      //   input_trans = dito.Transpose(input_trans);
      input_trans = phi::TransposeLast2Dim<T>(dev_ctx, input_trans);
      eigen_vectors->ShareDataWith(input_trans);
    }
  }

  using ValueType = phi::dtype::Real<T>;
  inline void EvdBuffer(cusolverDnHandle_t handle,
                        cusolverEigMode_t jobz,
                        cublasFillMode_t uplo,
                        int n,
                        const T *A,
                        int lda,
                        const ValueType *W,
                        int *lwork) const;

  inline void Evd(cusolverDnHandle_t handle,
                  cusolverEigMode_t jobz,
                  cublasFillMode_t uplo,
                  int n,
                  T *A,
                  int lda,
                  ValueType *W,
                  T *work,
                  int lwork,
                  int *devInfo) const;
};

using phi::dtype::complex;

#define FUNC_WITH_TYPES(m)                       \
  m(float, Ssy, float) m(double, Dsy, double) m( \
      complex<float>, Che, cuComplex) m(complex<double>, Zhe, cuDoubleComplex)

#define EVDBUFFER_INSTANCE(T, C, CastType)                             \
  template <>                                                          \
  inline void MatrixEighFunctor<GPUContext, T>::EvdBuffer(             \
      cusolverDnHandle_t handle,                                       \
      cusolverEigMode_t jobz,                                          \
      cublasFillMode_t uplo,                                           \
      int n,                                                           \
      const T *A,                                                      \
      int lda,                                                         \
      const ValueType *W,                                              \
      int *lwork) const {                                              \
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDn##C##evd_bufferSize( \
        handle,                                                        \
        jobz,                                                          \
        uplo,                                                          \
        n,                                                             \
        reinterpret_cast<const CastType *>(A),                         \
        lda,                                                           \
        W,                                                             \
        lwork));                                                       \
  }

FUNC_WITH_TYPES(EVDBUFFER_INSTANCE);

#define EVD_INSTANCE(T, C, CastType)                                           \
  template <>                                                                  \
  inline void MatrixEighFunctor<GPUContext, T>::Evd(cusolverDnHandle_t handle, \
                                                    cusolverEigMode_t jobz,    \
                                                    cublasFillMode_t uplo,     \
                                                    int n,                     \
                                                    T *A,                      \
                                                    int lda,                   \
                                                    ValueType *W,              \
                                                    T *work,                   \
                                                    int lwork,                 \
                                                    int *devInfo) const {      \
    PADDLE_ENFORCE_GPU_SUCCESS(                                                \
        dynload::cusolverDn##C##evd(handle,                                    \
                                    jobz,                                      \
                                    uplo,                                      \
                                    n,                                         \
                                    reinterpret_cast<CastType *>(A),           \
                                    lda,                                       \
                                    W,                                         \
                                    reinterpret_cast<CastType *>(work),        \
                                    lwork,                                     \
                                    devInfo));                                 \
  }

FUNC_WITH_TYPES(EVD_INSTANCE);

#undef FUNC_WITH_TYPES
#undef EVDBUFFER_INSTANCE
#undef EVD_INSTANCE

#endif  // PADDLE_WITH_CUDA

}  // namespace funcs
}  // namespace phi