gru_unit_op.h 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/math/math_function.h"
G
guosheng 已提交
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
G
guosheng 已提交
22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

D
dzhwinter 已提交
31 32 33 34
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

35 36
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };

Q
QI JUN 已提交
37
template <typename DeviceContext, typename T>
38
class GRUUnitKernel : public framework::OpKernel<T> {
G
guosheng 已提交
39
 public:
40 41 42 43 44 45 46 47 48 49 50 51 52 53
  template <typename Device, typename X, typename Y>
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
    if (act_type == identity)
      y.device(d) = x;
    else if (act_type == sigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == tanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == relu)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
54
  void Compute(const framework::ExecutionContext& context) const override {
55 56 57 58 59
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* bias = context.Input<Tensor>("Bias");
    auto* gate = context.Output<Tensor>("Gate");
G
guosheng 已提交
60
    gate->mutable_data<T>(context.GetPlace());
61
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
G
guosheng 已提交
62
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
63
    auto* hidden = context.Output<Tensor>("Hidden");
G
guosheng 已提交
64 65 66 67 68 69 70 71 72 73
    hidden->mutable_data<T>(context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    auto x = EigenMatrix<T>::From(*input);
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
    auto h = EigenMatrix<T>::From(*hidden);
Q
QI JUN 已提交
74 75
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
76 77

    // calculate unactivated gate outputs
G
guosheng 已提交
78 79 80 81 82 83 84 85
    if (bias) {
      auto b = EigenMatrix<T>::From(*bias);
      g.device(place) = x +
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    } else {
      g.device(place) = x;
    }
G
guosheng 已提交
86 87 88 89
    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
    T* gate_data = gate->data<T>();
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
Y
Yu Yang 已提交
90 91 92 93
    auto blas = math::GetBlas<DeviceContext, T>(context);
    blas.GEMM(false, false, batch_size, 2 * frame_size, frame_size, 1,
              hidden_prev_data, frame_size, weight_data, frame_size * 2, 1,
              gate_data, frame_size * 3);
G
guosheng 已提交
94 95 96 97

    // calculate activited gate
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
98 99
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
G
guosheng 已提交
100 101
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
102 103
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
G
guosheng 已提交
104 105
    auto r = g.slice(r_offsets, extents);  // reset gate
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
Y
Yu Yang 已提交
106 107 108 109
    blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
              reset_hidden_prev_data, frame_size,
              weight_data + frame_size * frame_size * 2, frame_size, 1,
              gate_data + frame_size * 2, frame_size * 3);
G
guosheng 已提交
110 111

    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
112 113
    ActCompute(context.Attr<int>("activation"), place,
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
G
guosheng 已提交
114 115 116
    auto c = g.slice(c_offsets, extents);  // output candidate

    // calculate final output
G
guosheng 已提交
117
    h.device(place) = u * (c - h_p) + h_p;
G
guosheng 已提交
118 119 120
  }
};

Q
QI JUN 已提交
121
template <typename DeviceContext, typename T>
122
class GRUUnitGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
123
 public:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
                      DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == identity)
      dx.device(d) = dy;
    else if (act_type == sigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == tanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == relu)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
140
  void Compute(const framework::ExecutionContext& context) const override {
141 142 143 144 145 146 147
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* gate = context.Input<Tensor>("Gate");
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
G
guosheng 已提交
148
    auto* hidden_prev_grad =
149
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
G
guosheng 已提交
150
    auto* weight_grad =
151 152
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
G
guosheng 已提交
153 154 155 156 157
    Tensor gate_grad;
    Tensor reset_hidden_prev_grad;

    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
158 159
    T* gate_grad_data =
        gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
G
guosheng 已提交
160
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
161 162
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.mutable_data<T>(
        reset_hidden_prev->dims(), context.GetPlace());
G
guosheng 已提交
163 164 165 166 167 168

    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
    auto d_g = EigenMatrix<T>::From(gate_grad);
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
Q
QI JUN 已提交
169 170
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
171

172 173 174
    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

G
guosheng 已提交
175 176 177 178 179 180 181 182 183
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
    auto r = g.slice(r_offsets, extents);  // reset gate
    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
    auto c = g.slice(c_offsets, extents);  // output candidate

    // backward for unactivated update gate
184
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
G
guosheng 已提交
185
                   d_g.slice(u_offsets, extents), d_h * (c - h_p));
G
guosheng 已提交
186
    // backward for unactivated output candidate
187
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
G
guosheng 已提交
188
                   d_g.slice(c_offsets, extents), d_h * u);
G
guosheng 已提交
189
    // backward for reset_hidden_prev
Y
Yu Yang 已提交
190 191 192 193 194
    auto blas = math::GetBlas<DeviceContext, T>(context);
    blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
              gate_grad_data + frame_size * 2, frame_size * 3,
              weight_data + frame_size * frame_size * 2, frame_size, 0,
              reset_hidden_prev_grad_data, frame_size);
G
guosheng 已提交
195
    // backward for unactivated reset gate
196 197
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
198 199 200 201
    // backward for weight
    if (weight_grad) {
      T* weight_grad_data = weight_grad->mutable_data<T>(context.GetPlace());
      // backward for state_weight
Y
Yu Yang 已提交
202 203 204 205
      blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                reset_hidden_prev_data, frame_size,
                gate_grad_data + frame_size * 2, frame_size * 3, 0,
                weight_grad_data + frame_size * frame_size * 2, frame_size);
206 207

      // backward for update_gate_weight and reset_gate_weight
Y
Yu Yang 已提交
208 209 210
      blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                hidden_prev_data, frame_size, gate_grad_data, frame_size * 3, 0,
                weight_grad_data, frame_size * 2);
211
    }
G
guosheng 已提交
212
    // backward for hidden_prev
213 214 215 216 217
    if (hidden_prev_grad) {
      T* hidden_prev_grad_data =
          hidden_prev_grad->mutable_data<T>(context.GetPlace());
      auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
      d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u);
Y
Yu Yang 已提交
218 219 220
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                gate_grad_data, frame_size * 3, weight_data, frame_size * 2, 1,
                hidden_prev_grad_data, frame_size);
221
    }
G
guosheng 已提交
222
    // backward for input
223 224 225 226 227
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto d_x = EigenMatrix<T>::From(*input_grad);
      d_x.device(place) = d_g;
    }
G
guosheng 已提交
228
    // backward for bias
G
guosheng 已提交
229 230
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
231
      auto d_b = EigenVector<T>::Flatten(*bias_grad);
G
guosheng 已提交
232 233
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
    }
G
guosheng 已提交
234 235 236 237 238
  }
};

}  // namespace operators
}  // namespace paddle