sequence_conv_op.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/sequence_conv_op.h"
C
chengduoZH 已提交
16

Y
Yang Yang 已提交
17 18
#include <algorithm>

C
chengduoZH 已提交
19 20 21
namespace paddle {
namespace operators {

C
chengduoZH 已提交
22
class SequenceConvOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
23 24 25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
29 30 31
                   "Input(X) of SequenceConvOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) of SequenceConvOp should not be null.");
C
chengduoZH 已提交
32
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
33
                   "Output(Out) of SequenceConvOp should not be null.");
C
chengduoZH 已提交
34

C
chengduoZH 已提交
35 36
    int context_length = ctx->Attrs().Get<int>("contextLength");
    int context_start = ctx->Attrs().Get<int>("contextStart");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39
    auto in_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
C
chengduoZH 已提交
40 41
    PADDLE_ENFORCE(ctx->Attrs().Get<int>("contextStride") == 1,
                   "Currently, SequenceConvOp only supports contextStride=1.");
C
chengduoZH 已提交
42 43
    PADDLE_ENFORCE(in_dims.size() == 2 && filter_dims.size() == 2,
                   "Input(X, Filter) should be 2-D tensor.");
C
chengduoZH 已提交
44 45
    PADDLE_ENFORCE(filter_dims[0] == context_length * in_dims[1],
                   "Filter's height should be context_length * "
C
chengduoZH 已提交
46
                   "input_hidden_size .");
C
chengduoZH 已提交
47

C
chengduoZH 已提交
48
    if (ctx->Attrs().Get<bool>("paddingTrainable")) {
C
chengduoZH 已提交
49 50 51
      PADDLE_ENFORCE(
          ctx->HasInput("PaddingData"),
          "Input(PaddingData) of SequenceConvOp should not be null.");
52
      framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
C
chengduoZH 已提交
53 54 55 56 57
      int up_pad = std::max(0, -context_start);
      int down_pad = std::max(0, context_start + context_length - 1);
      int total_pad = up_pad + down_pad;
      int input_width = static_cast<int>(in_dims[1]);

58 59
      if (context_start == 0 && context_length == 1) {
        PADDLE_THROW(
C
chengduoZH 已提交
60
            "If context_start is 0 and context_length is 1, paddingTrainable "
61 62
            "should be false.");
      }
C
chengduoZH 已提交
63 64 65 66 67 68 69 70
      PADDLE_ENFORCE(padding_dim.size() == 2,
                     "Input(PaddingData) should be 2-D tensor.");
      PADDLE_ENFORCE(
          padding_dim[0] == total_pad && padding_dim[1] == input_width,
          "Input(PaddingData)'s shape is not consistent with 'context_start' "
          "and 'context_length'.");
    }

C
chengduoZH 已提交
71
    in_dims[1] = filter_dims[1];
C
chengduoZH 已提交
72
    ctx->SetOutputDim("Out", in_dims);
C
chengduoZH 已提交
73
    ctx->ShareLoD("X", "Out");
C
chengduoZH 已提交
74 75 76
  }
};

C
chengduoZH 已提交
77
class SequenceConvGradOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
78 79 80 81 82 83
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
C
chengduoZH 已提交
84 85
                   "Gradient of output(Out) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("X"), "The input(X) should not be null.");
C
chengduoZH 已提交
86

C
chengduoZH 已提交
87
    if (ctx->Attrs().Get<bool>("paddingTrainable") &&
C
chengduoZH 已提交
88
        ctx->HasOutput(framework::GradVarName("PaddingData"))) {
C
chengduoZH 已提交
89 90
      ctx->SetOutputDim(framework::GradVarName("PaddingData"),
                        ctx->GetInputDim("PaddingData"));
C
chengduoZH 已提交
91
    }
C
chengduoZH 已提交
92 93
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
94
      ctx->ShareLoD("X", framework::GradVarName("X"));
C
chengduoZH 已提交
95
    }
C
chengduoZH 已提交
96 97 98 99
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"),
                        ctx->GetInputDim("Filter"));
    }
C
chengduoZH 已提交
100 101 102
  }
};

C
chengduoZH 已提交
103
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
C
chengduoZH 已提交
104
 public:
105
  SequenceConvOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
106
      : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
107 108
    AddInput(
        "X",
109
        "(LoDTensor) the input(X) is a LodTensor, which supports "
C
chengduoZH 已提交
110
        "variable-time length input sequence. The underlying tensor in "
111 112
        "this LoDTensor is a matrix with shape (T, N), where T is the "
        "total time steps in this mini-batch and N is the input_hidden_size.");
C
chengduoZH 已提交
113
    AddInput("PaddingData",
C
chengduoZH 已提交
114 115
             "(Tensor, optional) the input(PaddingData) is an optional "
             "parameter, and it is learnable. "
C
chengduoZH 已提交
116 117
             "This is a tensor with shape (P, N), where P is the "
             "top_pad + bottom_pad, N is the input_hidden_size. In order to "
C
chengduoZH 已提交
118 119 120 121
             "ensure the equal length of sequence before and after "
             "convolution, it is necessary to fill the top and bottom of each "
             "sequence according to context_length, context_stride and "
             "context_start")
C
chengduoZH 已提交
122
        .AsDispensable();
C
chengduoZH 已提交
123 124 125
    AddInput(
        "Filter",
        "(Tensor) the input(Filter) is an learnable parameter."
C
chengduoZH 已提交
126 127
        "This is a tensor with shape (K, M), where K is the "
        "context_length * input_hidden_size, M is the output feature size.");
C
chengduoZH 已提交
128 129 130 131
    AddOutput(
        "Out",
        "(LoDTensor) the output(Out) is a LodTensor, which support "
        "variable-time length output sequence. The underlying tensor in "
C
chengduoZH 已提交
132 133
        "this LoDTensor is a matrix with shape (T, M), where, T is the "
        "total time steps in this mini-batch, M is the output feature size.");
C
chengduoZH 已提交
134

C
chengduoZH 已提交
135
    AddAttr<bool>("paddingTrainable",
C
chengduoZH 已提交
136
                  "(bool, default:false) the padding data of SequenceConvOp "
C
chengduoZH 已提交
137 138
                  "is trainable or not.")
        .SetDefault(false);
C
chengduoZH 已提交
139
    AddAttr<int>("contextLength",
C
chengduoZH 已提交
140
                 "(int) the contextLength of SequenceConvOp is the "
C
chengduoZH 已提交
141
                 "height of the convolution kernel.")
C
chengduoZH 已提交
142
        .GreaterThan(0);
C
chengduoZH 已提交
143
    AddAttr<int>("contextStart",
C
chengduoZH 已提交
144
                 "(int, default:0) the contextStart of SequenceConvOp "
C
chengduoZH 已提交
145
                 "represents the beginning of the convolution of the number of "
C
chengduoZH 已提交
146 147 148 149 150
                 "rows of sequence, which can be negative. The negative number "
                 "means to pad contextStart time-steps of zeros or learnable "
                 "parameters at the beginning of each instance. The positive "
                 "number means to skip contextStart time-steps of each "
                 "instance.")
C
chengduoZH 已提交
151
        .SetDefault(0);
C
chengduoZH 已提交
152
    AddAttr<int>("contextStride",
C
chengduoZH 已提交
153
                 "(int, default:1) the contextStride of SequenceConvOp "
C
chengduoZH 已提交
154
                 "represents the stride length of convolution kernel. "
C
chengduoZH 已提交
155
                 "Currently, SequenceConvOp only supports"
C
chengduoZH 已提交
156
                 "contextStride=1.")
C
chengduoZH 已提交
157
        .SetDefault(1)
C
chengduoZH 已提交
158
        .GreaterThan(0);
C
chengduoZH 已提交
159 160

    AddComment(R"DOC(
161 162 163 164 165 166 167 168 169 170
Sequence Conv Operator.

SequenceConvOp performs convolution operation on features of contextLength
time-steps of each instance. The convolution operation calculates the output
based on the input, filter, strides and paddings parameters.
The size of each dimension of the parameters is checked during infer-shape.
In order to ensure the equal length of sequence before and after convolution,
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.

C
chengduoZH 已提交
171 172 173 174 175 176 177 178
    )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
179
REGISTER_OPERATOR(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
180 181
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(sequence_conv_grad, ops::SequenceConvGradOp);
C
chengduoZH 已提交
182 183

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
184 185 186
    sequence_conv,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
187
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
188
    sequence_conv_grad,
Q
QI JUN 已提交
189 190
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, double>);