uniform_random_op.cc 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5 6 7 8 9 10 11 12 13
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
Y
Yu Yang 已提交
16 17 18

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
19

Q
qijun 已提交
20 21 22 23
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
24
class CPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
25
 public:
Q
Qiao Longfei 已提交
26
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yancey1989 已提交
27 28 29 30 31
    framework::Tensor* tensor(nullptr);
    auto out_var = ctx.OutputVar("Out");
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = ctx.Output<framework::LoDTensor>("Out");
    } else if (out_var->IsType<framework::SelectedRows>()) {
Y
Yancey1989 已提交
32
      auto shape = ctx.Attr<std::vector<int>>("shape");
Y
Yancey1989 已提交
33
      tensor = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
Y
Yancey1989 已提交
34
      tensor->Resize(framework::make_ddim(shape));
Y
Yancey1989 已提交
35 36 37
    } else {
      PADDLE_THROW("Only support LoDTensor and SelectedRows.");
    }
Q
Qiao Longfei 已提交
38
    T* data = tensor->mutable_data<T>(ctx.GetPlace());
Y
Yancey1989 已提交
39
    data[0] = static_cast<T>(1000);
Q
Qiao Longfei 已提交
40
    unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
Q
qijun 已提交
41 42 43 44 45 46
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
Q
Qiao Longfei 已提交
47 48
        static_cast<T>(ctx.Attr<float>("min")),
        static_cast<T>(ctx.Attr<float>("max")));
49
    int64_t size = tensor->numel();
Q
qijun 已提交
50
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
51 52 53 54 55
      data[i] = dist(engine);
    }
  }
};

Y
Yu Yang 已提交
56
class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
57 58 59
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

60
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
61 62
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UniformRandomOp should not be null.");
63

Q
Qiao Longfei 已提交
64 65 66
    PADDLE_ENFORCE(
        ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
        "uniform_random's min must less then max");
Q
QI JUN 已提交
67
    auto& shape = ctx->Attrs().Get<std::vector<int>>("shape");
Q
qijun 已提交
68
    std::vector<int64_t> temp;
Q
QI JUN 已提交
69 70
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
71 72
      temp.push_back(static_cast<int64_t>(dim));
    }
Q
Qiao Longfei 已提交
73
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
Y
Yu Yang 已提交
74
  }
Y
Yu Yang 已提交
75

76
 protected:
77
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
78
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
79
    return framework::OpKernelType(
80
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
Q
QI JUN 已提交
81
        ctx.GetPlace());
Y
Yu Yang 已提交
82
  }
Y
Yu Yang 已提交
83 84
};

Y
Yu Yang 已提交
85
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
86
 public:
87
  UniformRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker)
Y
Yu Yang 已提交
88
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
89 90 91 92
    AddOutput("Out", "(Tensor) The output tensor of uniform random op");
    AddComment(R"DOC(
Uniform random operator.

93
This operator initializes a tensor with random values sampled from a
94 95
uniform distribution.

Y
Yu Yang 已提交
96
)DOC");
97 98 99 100 101 102 103 104 105 106
    AddAttr<std::vector<int>>("shape",
                              "(vector<int>) The shape of the output tensor");
    AddAttr<float>("min",
                   "(float, default -1.0) "
                   "Minimum value of uniform random")
        .SetDefault(-1.0f);
    AddAttr<float>("max",
                   "(float, default 1.0) "
                   "Maximun value of uniform random")
        .SetDefault(1.0f);
Q
qijun 已提交
107
    AddAttr<int>("seed",
108 109
                 "(int, default 0) "
                 "Random seed used for generating samples. "
110 111 112
                 "0 means use a seed generated by the system."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
113
        .SetDefault(0);
F
fengjiayi 已提交
114
    AddAttr<int>("dtype", "(int, default 5(FP32)) Output tensor data type")
115
        .SetDefault(framework::proto::VarType::FP32);
Y
Yu Yang 已提交
116 117 118 119 120
  }
};
}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
121 122
REGISTER_OP_WITHOUT_GRADIENT(uniform_random, paddle::operators::UniformRandomOp,
                             paddle::operators::UniformRandomOpMaker);
Q
qijun 已提交
123
REGISTER_OP_CPU_KERNEL(uniform_random,
124 125
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);
126 127 128
REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like,
                       paddle::operators::CPUUniformRandomKernel<float>,
                       paddle::operators::CPUUniformRandomKernel<double>);