test_machine_translation.py 11.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yang Yu 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yan Chunwei 已提交
16
import numpy as np
17
import paddle
18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
Y
Yang Yu 已提交
22
import unittest
武毅 已提交
23
import os
Y
Yan Chunwei 已提交
24 25 26

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
Q
Qiao Longfei 已提交
27 28
hidden_dim = 32
word_dim = 16
Q
Qiao Longfei 已提交
29 30
batch_size = 2
max_length = 8
Y
Yan Chunwei 已提交
31 32
topk_size = 50
trg_dic_size = 10000
Q
Qiao Longfei 已提交
33
beam_size = 2
Y
Yan Chunwei 已提交
34

Q
Qiao Longfei 已提交
35 36 37
decoder_size = hidden_dim


Y
Yang Yu 已提交
38
def encoder(is_sparse):
Q
Qiao Longfei 已提交
39
    # encoder
Q
Qiao Longfei 已提交
40
    src_word_id = pd.data(
Q
Qiao Longfei 已提交
41
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
42
    src_embedding = pd.embedding(
Q
Qiao Longfei 已提交
43 44 45
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
Y
Yang Yu 已提交
46
        is_sparse=is_sparse,
Q
Qiao Longfei 已提交
47 48
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
49 50 51 52 53
    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out

Q
Qiao Longfei 已提交
54

Y
Yang Yu 已提交
55
def decoder_train(context, is_sparse):
Q
Qiao Longfei 已提交
56
    # decoder
Q
Qiao Longfei 已提交
57
    trg_language_word = pd.data(
Q
Qiao Longfei 已提交
58
        name="target_language_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
59
    trg_embedding = pd.embedding(
Q
Qiao Longfei 已提交
60 61 62
        input=trg_language_word,
        size=[dict_size, word_dim],
        dtype='float32',
Y
Yang Yu 已提交
63
        is_sparse=is_sparse,
Q
Qiao Longfei 已提交
64 65
        param_attr=fluid.ParamAttr(name='vemb'))

Q
Qiao Longfei 已提交
66
    rnn = pd.DynamicRNN()
Q
Qiao Longfei 已提交
67 68
    with rnn.block():
        current_word = rnn.step_input(trg_embedding)
Q
Qiao Longfei 已提交
69 70
        pre_state = rnn.memory(init=context)
        current_state = pd.fc(input=[current_word, pre_state],
Q
Qiao Longfei 已提交
71 72
                              size=decoder_size,
                              act='tanh')
Q
Qiao Longfei 已提交
73 74 75 76 77 78

        current_score = pd.fc(input=current_state,
                              size=target_dict_dim,
                              act='softmax')
        rnn.update_memory(pre_state, current_state)
        rnn.output(current_score)
Q
Qiao Longfei 已提交
79 80

    return rnn()
Y
Yan Chunwei 已提交
81 82


Y
Yang Yu 已提交
83
def decoder_decode(context, is_sparse):
Q
Qiao Longfei 已提交
84 85
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
Y
Yang Yu 已提交
86
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
Q
Qiao Longfei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the lod of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
Y
Yang Yu 已提交
118
            is_sparse=is_sparse)
Q
Qiao Longfei 已提交
119 120

        # use rnn unit to update rnn
121
        current_state = pd.fc(input=[pre_state_expanded, pre_ids_emb],
Q
Qiao Longfei 已提交
122 123
                              size=decoder_size,
                              act='tanh')
124
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
Q
Qiao Longfei 已提交
125
        # use score to do beam search
126
        current_score = pd.fc(input=current_state_with_lod,
Q
Qiao Longfei 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                              size=target_dict_dim,
                              act='softmax')
        topk_scores, topk_indices = pd.topk(current_score, k=50)
        selected_ids, selected_scores = pd.beam_search(
            pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)

        pd.increment(x=counter, value=1, in_place=True)

        # update the memories
        pd.array_write(current_state, array=state_array, i=counter)
        pd.array_write(selected_ids, array=ids_array, i=counter)
        pd.array_write(selected_scores, array=scores_array, i=counter)

        pd.less_than(x=counter, y=array_len, cond=cond)

    translation_ids, translation_scores = pd.beam_search_decode(
        ids=ids_array, scores=scores_array)

    # return init_ids, init_scores

    return translation_ids, translation_scores


武毅 已提交
150
def train_main(use_cuda, is_sparse, is_local=True):
Y
Yang Yu 已提交
151 152 153 154 155 156
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    rnn_out = decoder_train(context, is_sparse)
Q
Qiao Longfei 已提交
157
    label = pd.data(
Q
Qiao Longfei 已提交
158
        name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
159
    cost = pd.cross_entropy(input=rnn_out, label=label)
Y
Yu Yang 已提交
160
    avg_cost = pd.mean(cost)
Q
Qiao Longfei 已提交
161

162 163 164 165
    optimizer = fluid.optimizer.Adagrad(
        learning_rate=1e-4,
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.1))
W
Wu Yi 已提交
166
    optimizer.minimize(avg_cost)
Y
Yan Chunwei 已提交
167 168 169

    train_data = paddle.batch(
        paddle.reader.shuffle(
Q
Qiao Longfei 已提交
170
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
Y
Yan Chunwei 已提交
171 172
        batch_size=batch_size)

173 174 175 176
    feed_order = [
        'src_word_id', 'target_language_word', 'target_language_next_word'
    ]

Y
Yan Chunwei 已提交
177 178
    exe = Executor(place)

武毅 已提交
179 180 181
    def train_loop(main_program):
        exe.run(framework.default_startup_program())

182 183 184 185 186
        feed_list = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list, place)

武毅 已提交
187 188 189 190
        batch_id = 0
        for pass_id in xrange(1):
            for data in train_data():
                outs = exe.run(main_program,
191
                               feed=feeder.feed(data),
武毅 已提交
192 193 194 195 196 197 198 199 200 201 202
                               fetch_list=[avg_cost])
                avg_cost_val = np.array(outs[0])
                print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                      " avg_cost=" + str(avg_cost_val))
                if batch_id > 3:
                    break
                batch_id += 1

    if is_local:
        train_loop(framework.default_main_program())
    else:
G
gongweibao 已提交
203 204
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
205 206 207 208
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
209
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
210
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
211 212
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
213
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
214
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
215 216 217 218 219 220 221 222
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yan Chunwei 已提交
223 224


Y
Yang Yu 已提交
225 226 227 228 229 230 231
def decode_main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    context = encoder(is_sparse)
    translation_ids, translation_scores = decoder_decode(context, is_sparse)
Q
Qiao Longfei 已提交
232 233 234 235 236 237 238 239 240

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
241
    init_lod = [1] * batch_size
Q
Qiao Longfei 已提交
242 243
    init_lod = [init_lod, init_lod]

244 245 246
    init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
    init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)

Q
Qiao Longfei 已提交
247 248 249 250 251
    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

252 253 254 255 256 257 258 259 260 261 262
    feed_order = ['src_word_id']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    for data in train_data():
        feed_dict = feeder.feed(map(lambda x: [x[0]], data))
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores
Q
Qiao Longfei 已提交
263 264 265

        result_ids, result_scores = exe.run(
            framework.default_main_program(),
266
            feed=feed_dict,
Q
Qiao Longfei 已提交
267 268 269 270 271 272
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)
        print result_ids.lod()
        break


Y
Yang Yu 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
class TestMachineTranslation(unittest.TestCase):
    pass


@contextlib.contextmanager
def scope_prog_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            yield


def inject_test_train(use_cuda, is_sparse):
    f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu', 'sparse'
                                         if is_sparse else 'dense')

    def f(*args):
        with scope_prog_guard():
            train_main(use_cuda, is_sparse)

    setattr(TestMachineTranslation, f_name, f)


def inject_test_decode(use_cuda, is_sparse, decorator=None):
    f_name = 'test_{0}_{1}_decode'.format('cuda'
                                          if use_cuda else 'cpu', 'sparse'
                                          if is_sparse else 'dense')

    def f(*args):
        with scope_prog_guard():
            decode_main(use_cuda, is_sparse)

    if decorator is not None:
        f = decorator(f)

    setattr(TestMachineTranslation, f_name, f)


for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):
        inject_test_train(_use_cuda_, _is_sparse_)

for _use_cuda_ in (False, True):
    for _is_sparse_ in (False, True):

        _decorator_ = None
        if _use_cuda_:
            _decorator_ = unittest.skip(
                reason='Beam Search does not support CUDA!')

        inject_test_decode(
            is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_)

Y
Yan Chunwei 已提交
328
if __name__ == '__main__':
Y
Yang Yu 已提交
329
    unittest.main()