vol2col.h 3.1 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/tensor.h"
D
dzhwinter 已提交
18
#include "paddle/framework/tensor_util.h"
C
chengduoZH 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/platform/device_context.h"

namespace paddle {
namespace operators {
namespace math {
/*
 * \brief Converts the feature data of four dimensions(CDHW) into a colData of
 *        seven dimensions in the Vol2ColFunctor calculation,
 *        And in the Col2VolFunctor calculation, it is reversed.
 *
 * \param volData   Vol data.
 * \param volShape  The shape of volData,
 *                 [input_channels, input_depth, input_height, input_width].
 * \param colData  Column data.
 * \param colShape The shape of colData.
 *
C
chengduoZH 已提交
35 36 37 38 39 40 41 42 43
 * \param dilations    dilation data.
 * \param 3-dimension  [dilation_depth, dilation_height, dilation_width].
 *
 * \param strides      stride data.
 * \param 3-dimension  [stride_depth, stride_height, stride_width].
 *
 * \param paddings     padding data.
 * \param 3-dimension  [d_pad, h_pad, w_pad].
 *
C
chengduoZH 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * The shape of colData is:
 * [input_channels, filter_depth, filter_height, filter_width, output_depth,
 * output_height, output_width]
 * So, it is easy to reshape into a convolution matrix for convolution
 * calculation based on matrix multiplication.
 * The shape of convolution matrix is [height, width], where the height is equal
 * input_channels * filter_depth * filter_height * filter_width, and the width
 * is equal output_depth * output_height * output_width.
 *
 * Reshape:
 *     shape of colData           shape of convolution matrix
 *     [input_channels,
 *      filter_depth,
 *      filter_height,
 *      filter_width,      ======>      [height, width]
 *      output_depth,
 *      output_height,
 *      output_width]
 *
 * \note The caller needs to ensure that volShape.inputChannels is equal to
 *       colShape.inputChannels.
 */
Q
QI JUN 已提交
66
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
67 68
class Vol2ColFunctor {
 public:
Q
QI JUN 已提交
69
  void operator()(const DeviceContext& context, const framework::Tensor& vol,
C
chengduoZH 已提交
70 71 72 73
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  framework::Tensor* col) const;
C
chengduoZH 已提交
74 75
};

Q
QI JUN 已提交
76
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
77 78
class Col2VolFunctor {
 public:
Q
QI JUN 已提交
79
  void operator()(const DeviceContext& context, const framework::Tensor& col,
C
chengduoZH 已提交
80 81 82 83
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  framework::Tensor* vol) const;
C
chengduoZH 已提交
84 85 86 87 88
};

}  // namespace math
}  // namespace operators
}  // namespace paddle