quant_layers.py 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.dygraph import layers
from paddle.fluid import core
from paddle.fluid import dygraph_utils
from paddle.fluid import unique_name
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import _varbase_creator
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.initializer import Constant
from paddle.fluid.data_feeder import check_variable_and_dtype
H
huangxu96 已提交
24
from paddle.nn import functional as F
25 26
import logging
from paddle.fluid.log_helper import get_logger
27 28

__all__ = [
29
    'FakeQuantAbsMax',
30
    'FakeQuantMovingAverageAbsMax',
31 32 33 34 35 36
    'FakeQuantChannelWiseAbsMax',
    'QuantizedConv2D',
    'QuantizedLinear',
    'MovingAverageAbsMaxScale',
    'MAOutputScaleLayer',
    'FakeQuantMAOutputScaleLayer',
37
    'QuantStub',
38 39
]

40 41
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
42

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class FakeQuantAbsMax(layers.Layer):
    r"""
    FakeQuantAbsMax layer does the abs_max quant and then dequant.
    Its computational formula is described as below:

    :math:`scale = max(abs(X))`
    :math:`range = 2^{bit\_length - 1} - 1`
    :math:`Out = round(X / scale * range) * scale / range`
    """

    def __init__(self,
                 name=None,
                 quant_bits=8,
                 dtype='float32',
                 quant_on_weight=False):
        super(FakeQuantAbsMax, self).__init__()
        self._quant_bits = quant_bits
        self._name = name
        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        self._scale_name = unique_name.generate(scale_prefix)
        if quant_on_weight:
            scale_attr = ParamAttr(
                name=self._scale_name,
                initializer=Constant(0.0),
                trainable=False)
            self._scale = self.create_parameter(
                shape=[1], attr=scale_attr, dtype=self._dtype)
            self._scale.stop_gradient = True
        else:
            self._scale = None

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('bit_length', self._quant_bits)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
            out_scale = self._scale
            if not out_scale:
                out_scale = _varbase_creator(
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    name=self._scale_name,
                    shape=[1],
                    dtype=self._dtype,
                    persistable=False)
                out_scale.stop_gradient = True
            out, _, = core.ops.fake_quantize_dequantize_abs_max(
                input, quant_out, out_scale, *attrs)
            return out

        check_variable_and_dtype(input, 'input', ['float32'], "FakeQuantAbsMax")
        attrs = {'bit_length': self._quant_bits}
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        out_scale = self._scale
        if not out_scale:
            out_scale = self._helper.create_variable(
                name=self._scale_name,
                dtype=self._dtype,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True)
        outputs = {"Out": [quant_out], "OutScale": [out_scale]}

        self._helper.append_op(
            type="fake_quantize_dequantize_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


126
class FakeQuantMovingAverageAbsMax(layers.Layer):
127
    r"""
128
    FakeQuantMovingAverageAbsMax layer does the moving_average_abs_max quant and then dequant.
129 130 131 132 133 134 135 136 137 138 139 140
    Its computational formula is described as below:

    :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)`
    :math:`range = 2^{bit\_length - 1} - 1`
    :math:`Out = round(X / scale * range) * scale / range`
    """

    def __init__(self,
                 name=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 dtype='float32'):
141
        super(FakeQuantMovingAverageAbsMax, self).__init__()
142 143 144 145 146 147 148
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits

        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        scale_attr = ParamAttr(
            name=unique_name.generate(scale_prefix),
149
            initializer=Constant(0.),
150 151 152 153 154 155 156 157 158
            trainable=False)
        self._scale = self.create_parameter(
            shape=[1], attr=scale_attr, dtype=dtype)
        self._scale.stop_gradient = True

        state_prefix = "{}.state".format(
            name) if name else 'quant_dequant.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
159
            initializer=Constant(0),
160 161 162 163 164 165 166 167 168
            trainable=False)
        self._state = self.create_parameter(
            shape=[1], attr=state_attr, dtype=dtype)
        self._state.stop_gradient = True

        accum_prefix = "{}.accum".format(
            name) if name else 'quant_dequant.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
169
            initializer=Constant(0),
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            trainable=False)
        self._accum = self.create_parameter(
            shape=[1], attr=accum_attr, dtype=dtype)
        self._accum.stop_gradient = True

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('moving_rate', self._moving_rate, 'bit_length',
                     self._quant_bits, 'is_test', not self.training)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
            state = self._state if self.training else None
            accum = self._accum if self.training else None

            out, _, _, _ = core.ops.fake_quantize_dequantize_moving_average_abs_max(
                input, self._scale, accum, state, quant_out, self._scale, state,
                accum, *attrs)
            return out

        check_variable_and_dtype(input, 'input', ['float32'],
194
                                 "FakeQuantMovingAverageAbsMax")
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        attrs = {
            'moving_rate': self._moving_rate,
            'bit_length': self._quant_bits,
            'is_test': not self.training
        }
        inputs = {"X": [input], "InScale": [self._scale]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        outputs = {"Out": [quant_out], "OutScale": [self._scale]}

        if self.training:
            inputs['InState'] = [self._state]
            inputs['InAccum'] = [self._accum]
            outputs['OutState'] = [self._state]
            outputs['OutAccum'] = [self._accum]

        self._helper.append_op(
            type="fake_quantize_dequantize_moving_average_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


224
class FakeQuantChannelWiseAbsMax(layers.Layer):
225 226
    def __init__(self,
                 name=None,
227
                 channel_num=None,
228
                 quant_bits=8,
229
                 quant_axis=0,
230 231
                 dtype='float32',
                 quant_on_weight=False):
232 233
        assert quant_on_weight == True, "Channel_wise only can be used on weight quantization."
        super(FakeQuantChannelWiseAbsMax, self).__init__()
234
        self._quant_bits = quant_bits
235 236
        self._quant_axis = quant_axis
        self._dtype = dtype
237
        self._name = name
238
        self._channel_num = channel_num
239 240 241 242 243 244 245 246 247
        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        self._scale_name = unique_name.generate(scale_prefix)
        if quant_on_weight:
            scale_attr = ParamAttr(
                name=self._scale_name,
                initializer=Constant(0.0),
                trainable=False)
            self._scale = self.create_parameter(
248
                shape=[self._channel_num], attr=scale_attr, dtype=self._dtype)
249 250 251 252 253 254
            self._scale.stop_gradient = True
        else:
            self._scale = None

    def forward(self, input):
        if in_dygraph_mode():
255 256
            attrs = ('bit_length', self._quant_bits, 'quant_axis',
                     self._quant_axis)
257 258 259 260 261 262
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
263

264
            out_scale = self._scale
265
            if out_scale is None:
266 267 268
                out_scale = _varbase_creator(
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    name=self._scale_name,
269
                    shape=[self._channel_num],
270 271 272
                    dtype=self._dtype,
                    persistable=False)
                out_scale.stop_gradient = True
273 274

            out, _, = core.ops.fake_channel_wise_quantize_dequantize_abs_max(
275 276 277
                input, quant_out, out_scale, *attrs)
            return out

278 279 280
        check_variable_and_dtype(input, 'input', ['float32'],
                                 "FakeQuantChannelWiseAbsMax")
        attrs = {'bit_length': self._quant_bits, 'quant_axis': self._quant_axis}
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        out_scale = self._scale
        if not out_scale:
            out_scale = self._helper.create_variable(
                name=self._scale_name,
                dtype=self._dtype,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True)
        outputs = {"Out": [quant_out], "OutScale": [out_scale]}

        self._helper.append_op(
299
            type="fake_channel_wise_quantize_dequantize_abs_max",
300 301 302 303 304 305 306
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
class MovingAverageAbsMaxScale(layers.Layer):
    def __init__(self, name=None, moving_rate=0.9, dtype='float32'):
        r"""
        MovingAverageMaxScale layer is used to calculating the output quantization
        scale of Layer. Its computational formula is described as below:

        :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)`
        :math:`Out = X`
        """
        super(MovingAverageAbsMaxScale, self).__init__()
        self._moving_rate = moving_rate

        scale_prefix = '{}.scale'.format(name) if name else 'outscale.scale'
        scale_name = unique_name.generate(scale_prefix)
        scale_attr = ParamAttr(
            name=scale_name, initializer=Constant(0), trainable=False)
        self._scale = self.create_parameter(
            shape=[1], attr=scale_attr, dtype=dtype)
        self._scale.stop_gradient = True

        state_prefix = "{}.state".format(name) if name else 'outscale.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
            initializer=Constant(0),
            trainable=False)
        self._state = self.create_parameter(
            shape=[1], attr=state_attr, dtype=dtype)
        self._state.stop_gradient = True

        accum_prefix = "{}.accum".format(name) if name else 'outscale.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
            initializer=Constant(0),
            trainable=False)
        self._accum = self.create_parameter(
            shape=[1], attr=accum_attr, dtype=dtype)
        self._accum.stop_gradient = True
H
huangxu96 已提交
344 345 346

    def forward(self, input):
        if in_dygraph_mode():
347 348 349 350
            attrs = ('moving_rate', self._moving_rate, 'is_test',
                     not self.training)
            state = self._state if self.training else None
            accum = self._accum if self.training else None
H
huangxu96 已提交
351 352
            quant_out = _varbase_creator(
                type=input.type,
353
                name="{}.tmp".format(input.name),
H
huangxu96 已提交
354 355 356 357
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)

358 359 360
            out, _, _, _ = core.ops.moving_average_abs_max_scale(
                input, accum, state, quant_out, self._scale, state, accum,
                *attrs)
H
huangxu96 已提交
361 362
            return out

363 364 365 366
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'MovingAverageAbsMaxScale')

        attrs = {'moving_rate': self._moving_rate, 'is_test': not self.training}
H
huangxu96 已提交
367 368
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
369
            name="{}.tmp".format(input.name),
H
huangxu96 已提交
370 371 372 373
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
374 375 376 377 378 379 380
        outputs = {"Out": [quant_out], "OutScale": [self._scale]}

        if self.training:
            inputs['InState'] = [self._state]
            inputs['InAccum'] = [self._accum]
            outputs['OutState'] = [self._state]
            outputs['OutAccum'] = [self._accum]
H
huangxu96 已提交
381 382

        self._helper.append_op(
383
            type="moving_average_abs_max_scale",
H
huangxu96 已提交
384 385 386 387 388 389 390
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


391
QuantStub = MovingAverageAbsMaxScale
392 393 394 395 396 397 398 399 400 401 402 403 404 405


class QuantizedConv2D(layers.Layer):
    """
    The computational logic of QuantizedConv2D is the same with Conv2D.
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
406 407 408 409 410
                 activation_quantize_type='abs_max',
                 weight_pre_layer=None,
                 act_pre_layer=None,
                 weight_quant_layer=None,
                 act_quant_layer=None):
411 412 413 414 415
        super(QuantizedConv2D, self).__init__()
        # For Conv2D
        self._groups = getattr(layer, '_groups')
        self._stride = getattr(layer, '_stride')
        self._padding = getattr(layer, '_padding')
H
huangxu96 已提交
416 417 418 419
        self._padding_mode = getattr(layer, '_padding_mode')
        if self._padding_mode != 'zeros':
            self._reversed_padding_repeated_twice = getattr(
                layer, '_reversed_padding_repeated_twice')
420
        self._dilation = getattr(layer, '_dilation')
H
huangxu96 已提交
421
        self._data_format = getattr(layer, '_data_format')
422 423
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
H
huangxu96 已提交
424

425
        # For FakeQuant
H
huangxu96 已提交
426
        self._conv2d_quant_axis = 0
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        if weight_quant_layer is not None:
            self._fake_quant_weight = weight_quant_layer()
        else:
            self._fake_quant_weight = _get_fake_quant_type(
                weight_quantize_type,
                name=self.weight.name,
                moving_rate=moving_rate,
                quant_bits=weight_bits,
                dtype=self._dtype,
                quant_on_weight=True,
                channel_num=self.weight.shape[self._conv2d_quant_axis],
                quant_axis=self._conv2d_quant_axis)
        if act_quant_layer is not None:
            self._fake_quant_input = act_quant_layer()
        else:
            self._fake_quant_input = _get_fake_quant_type(
                activation_quantize_type,
                name=layer.full_name(),
                moving_rate=moving_rate,
                quant_bits=activation_bits,
                dtype=self._dtype,
                quant_on_weight=False)

        self._act_preprocess = act_pre_layer(
        ) if act_pre_layer is not None else None
        self._weight_preprocess = weight_pre_layer(
        ) if weight_pre_layer is not None else None
454 455

    def forward(self, input):
456 457
        if self._act_preprocess is not None:
            input = self._act_preprocess(input)
458
        quant_input = self._fake_quant_input(input)
459 460 461 462 463

        weight = self.weight
        if self._weight_preprocess is not None:
            weight = self._weight_preprocess(self.weight)
        quant_weight = self._fake_quant_weight(weight)
464

H
huangxu96 已提交
465 466 467 468 469 470
        if self._padding_mode != 'zeros':
            quant_input = F.pad(quant_input,
                                self._reversed_padding_repeated_twice,
                                mode=self._padding_mode,
                                data_format=self._data_format)
            self._padding = 0
471

H
huangxu96 已提交
472 473 474 475 476 477 478 479 480
        return F.conv2d(
            quant_input,
            quant_weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
481 482 483 484 485 486 487 488 489 490 491 492 493 494


class QuantizedLinear(layers.Layer):
    """
    The computational logic of QuantizedLinear is the same with Linear.
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
495 496 497 498 499
                 activation_quantize_type='abs_max',
                 weight_pre_layer=None,
                 act_pre_layer=None,
                 weight_quant_layer=None,
                 act_quant_layer=None):
500 501 502 503
        super(QuantizedLinear, self).__init__()
        # For Linear
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
H
huangxu96 已提交
504
        self.name = getattr(layer, 'name')
505
        # For FakeQuant
H
huangxu96 已提交
506
        self._linear_quant_axis = 1
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

        if weight_quant_layer is not None:
            self._fake_quant_weight = weight_quant_layer()
        else:
            self._fake_quant_weight = _get_fake_quant_type(
                weight_quantize_type,
                name=self.weight.name,
                moving_rate=moving_rate,
                quant_bits=weight_bits,
                dtype=self._dtype,
                quant_on_weight=True,
                channel_num=self.weight.shape[self._linear_quant_axis],
                quant_axis=self._linear_quant_axis)

        if act_quant_layer is not None:
            self._fake_quant_input = act_quant_layer()
        else:
            self._fake_quant_input = _get_fake_quant_type(
                activation_quantize_type,
                name=layer.full_name(),
                moving_rate=moving_rate,
                quant_bits=activation_bits,
                dtype=self._dtype,
                quant_on_weight=False)

        self._act_preprocess = act_pre_layer(
        ) if act_pre_layer is not None else None
        self._weight_preprocess = weight_pre_layer(
        ) if weight_pre_layer is not None else None
536 537

    def forward(self, input):
538 539
        if self._act_preprocess is not None:
            input = self._act_preprocess(input)
540
        quant_input = self._fake_quant_input(input)
541 542 543 544 545 546

        weight = self.weight
        if self._weight_preprocess is not None:
            weight = self._weight_preprocess(self.weight)
        quant_weight = self._fake_quant_weight(weight)

H
huangxu96 已提交
547 548 549
        out = F.linear(
            x=quant_input, weight=quant_weight, bias=self.bias, name=self.name)
        return out
550 551


552 553 554
class MAOutputScaleLayer(layers.Layer):
    """
    Add MovingAverageMaxScale layer to the behind of the input layer.
555
    Calculate the scale (moving average abs max) for the output of the input layer.
556 557 558
    """

    def __init__(self, layer=None, moving_rate=0.9, name=None, dtype='float32'):
559
        r"""
560
        Construct
561
        """
562
        super(MAOutputScaleLayer, self).__init__()
563
        self._layer = layer
564 565 566 567 568 569 570 571 572 573 574 575
        if name is None:
            name = layer.full_name()
        self._ma_output_scale = \
            MovingAverageAbsMaxScale(name, moving_rate, dtype)

    def forward(self, *inputs, **kwargs):
        out = self._layer(*inputs, **kwargs)
        # TODO (jc): support the ops of several outputs
        if (isinstance(out, list) or isinstance(out, tuple)) and len(out) > 1:
            return out
        else:
            return self._ma_output_scale(out)
576

577 578

class FakeQuantMAOutputScaleLayer(layers.Layer):
579 580 581 582
    """
    Add FakeQuantMovingAverageAbsMax layer to the behind of the input layer.
    """

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 name=None,
                 *args,
                 **kwargs):

        super(FakeQuantMAOutputScaleLayer, self).__init__()
        self._layer = layer
        self._fake_quant_output = _get_fake_quant_type(
            'moving_average_abs_max',
            name=layer.full_name() if name is None else name,
            moving_rate=moving_rate,
            quant_bits=activation_bits,
            dtype=self._dtype,
            quant_on_weight=False)

    def forward(self, *inputs, **kwargs):
        out = self._layer(*inputs, **kwargs)
        # TODO (jc): support the ops of several outputs
        if (isinstance(out, list) or isinstance(out, tuple)) and len(out) > 1:
            return out
        else:
            return self._fake_quant_output(out)
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635


def _get_fake_quant_type(quant_type, **kwargs):
    call_args = {
        "name": kwargs.get("name", None),
        "quant_bits": kwargs.get("quant_bits", 8),
        "dtype": kwargs.get("dtype", "float32")
    }

    if quant_type == 'abs_max':
        call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False)
    elif quant_type == 'moving_average_abs_max':
        call_args["moving_rate"] = kwargs.get("moving_rate", 0.9)
    elif quant_type == 'channel_wise_abs_max':
        call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False)
        call_args["channel_num"] = kwargs.get("channel_num", None)
        call_args["quant_axis"] = kwargs.get("quant_axis", 0)
        assert call_args["channel_num"] is not None, (
            "You need to input channel_num"
            "when you use channel_wise_abs_max strategy.")
    fake_quant_map = {
        'abs_max': FakeQuantAbsMax,
        'moving_average_abs_max': FakeQuantMovingAverageAbsMax,
        'channel_wise_abs_max': FakeQuantChannelWiseAbsMax
    }

    return fake_quant_map[quant_type](**call_args)