api_custom_impl.h 5.3 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Z
zyfncg 已提交
17
#include <tuple>
18 19
#include <vector>

20
#include "paddle/phi/api/include/tensor.h"
21
#include "paddle/phi/common/int_array.h"
22
#include "paddle/phi/common/place.h"
23
#include "paddle/phi/common/scalar.h"
24
#include "paddle/utils/optional.h"
25 26 27 28

namespace paddle {
namespace experimental {

29 30 31 32
// NOTE: Separate forward and backward(grad) api impl
// NOTE: The api_impl in this file are arranged in alphabetic order.

////////////////// Forward api impls //////////////////////
33

C
chentianyu03 已提交
34 35 36 37 38 39 40 41
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adam_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
42 43
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
44 45 46 47 48 49 50 51
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow);

C
chentianyu03 已提交
52 53 54 55 56 57 58 59
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> adamw_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& learning_rate,
    const Tensor& moment1,
    const Tensor& moment2,
    const Tensor& beta1_pow,
    const Tensor& beta2_pow,
60 61
    const paddle::optional<Tensor>& master_param,
    const paddle::optional<Tensor>& skip_update,
C
chentianyu03 已提交
62 63 64 65 66 67 68 69 70 71 72
    const Scalar& beta1,
    const Scalar& beta2,
    const Scalar& epsilon,
    float lr_ratio,
    float coeff,
    bool with_decay,
    bool lazy_mode,
    int64_t min_row_size_to_use_multithread,
    bool multi_precision,
    bool use_global_beta_pow);

73 74 75 76 77 78 79 80 81 82 83 84 85 86
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu);

H
hong 已提交
87 88 89 90 91 92 93 94 95 96 97 98
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search);

99
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking);
100

Z
zyfncg 已提交
101 102 103 104 105
Tensor embedding_impl(const Tensor& x,
                      const Tensor& weight,
                      int64_t padding_idx,
                      bool sparse);

106
std::vector<Tensor> split_impl(const Tensor& x,
107
                               const IntArray& num_or_sections,
108
                               const Scalar& axis);
C
chentianyu03 已提交
109

110 111 112 113 114
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
115
    const paddle::optional<Tensor>& master_param,
116 117 118 119 120 121 122
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad);

Z
zyfncg 已提交
123 124 125 126
std::tuple<Tensor, Tensor> sgd_impl(
    const Tensor& param,
    const Tensor& learning_rate,
    const Tensor& grad,
127
    const paddle::optional<Tensor>& master_param,
Z
zyfncg 已提交
128 129
    bool multi_precision);

130 131
////////////////// Backward(grad) api impls //////////////////////

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
void add_n_grad_impl(const std::vector<Tensor>& x,
                     const Tensor& out_grad,
                     std::vector<Tensor*> x_grad);

void conv2d_grad_impl(const Tensor& input,
                      const Tensor& filter,
                      const Tensor& out_grad,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
                      const std::string& paddding_algorithm,
                      int groups,
                      const std::vector<int>& dilations,
                      const std::string& data_format,
                      bool use_addto,
                      int workspace_size_MB,
                      bool exhaustive_search,
                      Tensor* input_grad,
                      Tensor* filter_grad);

void imag_grad_impl(const Tensor& out_grad, Tensor* x_grad);

Z
zyfncg 已提交
153 154 155 156 157 158 159
void embedding_grad_impl(const Tensor& x,
                         const Tensor& weight,
                         const Tensor& out_grad,
                         int64_t padding_idx,
                         bool sparse,
                         Tensor* weight_grad);

160
void real_grad_impl(const Tensor& out_grad, Tensor* x_grad);
Z
zyfncg 已提交
161

162 163
}  // namespace experimental
}  // namespace paddle