index_select_impl.h 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
18
#include "paddle/phi/core/tensor_utils.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename Context, typename T, class Enable = void>
struct IndexSelectAdd {
  void operator()(const Context& ctx,
                  int slice_size,
                  const T* src_pointer,
                  const T* p_pointer,
                  T* dist_pointer) {
    for (int i = 0; i < slice_size; i++) {
      dist_pointer[i] = src_pointer[i] + p_pointer[i];
    }
  }
};

template <typename Context, typename T>
struct IndexSelectAdd<
    Context,
    T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const Context& ctx,
                  int slice_size,
                  const T* src_pointer,
                  const T* p_pointer,
                  T* dist_pointer) {
    auto blas = phi::funcs::GetBlas<Context, T>(ctx);
    blas.VADD(slice_size, src_pointer, p_pointer, dist_pointer);
  }
};

template <typename Context, typename T, typename IndexT = int>
void IndexSelectInner(const Context& ctx,
                      DenseTensor* input,
                      const DenseTensor& index,
                      DenseTensor* output,
                      int dim) {
  auto input_dim = input->dims();
  auto input_dim_size = input_dim.size();
  auto output_dim = output->dims();
  auto index_size = index.dims()[0];

  DenseTensor index_cpu_copy;
  if (!paddle::platform::is_cpu_place(index.place())) {
    phi::Copy(ctx, index, phi::CPUPlace(), true, &index_cpu_copy);
  }
  const IndexT* index_data = paddle::platform::is_cpu_place(index.place())
                                 ? index.data<IndexT>()
                                 : index_cpu_copy.data<IndexT>();
  ctx.template Alloc<T>(output);

  auto slice_size = 1;
  for (auto i = dim + 1; i < input_dim_size; i++) {
    slice_size *= input_dim[i];
  }

  auto outer_nums = 1;
  for (auto i = 0; i < dim; i++) {
    outer_nums *= input_dim[i];
  }

  for (int i = 0; i < index_size; i++) {
    PADDLE_ENFORCE_GE(
        index_data[i],
        0,
        phi::errors::InvalidArgument(
            "Variable value (index) of OP(index_select) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            input_dim[dim],
            index_data[i]));
    PADDLE_ENFORCE_LT(
        index_data[i],
        input_dim[dim],
        phi::errors::InvalidArgument(
            "Variable value (index) of OP(index_select) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            input_dim[dim],
            index_data[i]));
  }

  VLOG(3) << "Index_Select_Debug; outer_nums: " << outer_nums
          << "; slice_size: " << slice_size << "; index_size: " << index_size;

  input->Resize(phi::make_ddim({outer_nums, input_dim[dim], slice_size}));
  output->Resize(phi::make_ddim({outer_nums, index_size, slice_size}));

  auto input_tensor = EigenTensor<T, 3>::From(*input);
  auto output_tensor = EigenTensor<T, 3>::From(*output);

  auto& place = *ctx.eigen_device();

  for (auto j = 0; j < index_size; j++) {
    IndexT index_value = index_data[j];
    auto output_t = output_tensor.chip(j, 1);
    output_t.device(place) = input_tensor.chip(index_value, 1);
  }
  input->Resize(input_dim);
  output->Resize(output_dim);
}

template <typename Context, typename T, typename IndexT = int>
void IndexSelectGradInner(const Context& ctx,
                          const DenseTensor& out_grad,
                          const DenseTensor& index,
                          DenseTensor* x_grad,
                          int dim) {
  const T* input_data = out_grad.data<T>();
  const IndexT* index_data = index.data<IndexT>();

  const T* p_output = ctx.template Alloc<T>(x_grad);
  T* out_data = ctx.template Alloc<T>(x_grad);

  auto input_dim = out_grad.dims();
  auto input_dim_size = input_dim.size();
  auto output_dim = x_grad->dims();

  phi::funcs::SetConstant<Context, T> set_constant;
  set_constant(ctx, x_grad, static_cast<T>(0.0));

  auto slice_size = 1;
  for (auto i = dim + 1; i < input_dim_size; i++) {
    slice_size *= input_dim[i];
  }

  auto input_width = slice_size * input_dim[dim];
  auto output_width = slice_size * output_dim[dim];

  auto outer_nums = 1;
  for (auto i = 0; i < dim; i++) {
    outer_nums *= input_dim[i];
  }

  auto index_size = index.dims()[0];
  VLOG(3) << "Index_Select_Grad_Debug; outer_nums: " << outer_nums
          << "; slice_size: " << slice_size << "; input_width: " << input_width
          << "; output_width: " << output_width
          << "; index_size: " << index_size;

  for (auto i = 0; i < outer_nums; i++) {
    auto input_start_offset = i * input_width;
    auto output_start_offset = i * output_width;

    for (auto j = 0; j < index_size; j++) {
      IndexT index_value = index_data[j];
      auto src = input_data + input_start_offset + j * slice_size;
      auto p_out = p_output + output_start_offset + index_value * slice_size;
      auto dst = out_data + output_start_offset + index_value * slice_size;
      IndexSelectAdd<Context, T> index_select_add;
      index_select_add(ctx, slice_size, src, p_out, dst);
    }
  }
  x_grad->Resize(output_dim);
}

}  // namespace phi