inplace_op_pass.cc 15.6 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/inplace_op_pass.h"
#include <algorithm>
#include <deque>
#include <iterator>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
24
#include "paddle/fluid/framework/details/graph_print_pass.h"
D
dzhwinter 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
#include "paddle/fluid/framework/op_info.h"

// NOTE(dzhwinter): inplace means one op output variable reuse the input space.
// By our design, one operator only can read its input(const Variable),
// write its output(non-const Variable). If one operator is inplaced, means
// user have chance to write the space before reading happens.
// Especially when some optimize code writing style is applied.
//
//
// /* wrong case in operator */
// /*In this case, a larger allocation is allocated, input content is lost*/
// const Tensor* in = ctx.Input<Tensor>("In")
// Tensor* out = ctx.Output<Tensor>("Out");
// auto* out_ptr = out->mutable_data<T>(ctx.GetPlace());
// out_ptr[0] = 0;  // input contect is overwrited.

// For backward compacity. if enable_inplace_whitelist is turn on.
// only the ops in whitelist will be use inplace strategy.
// if not, all the op will be inplaced if it registered with InplaceClass
DEFINE_bool(
    enable_inplace_whitelist, true,
    "If this option turns on, only these op in whitelist can be inplaced."
    "If it turns off, all of the running op can be candidate of inplaced op."
    "Such as scale, elementwise_add"
    "By default, it's turned on");

// clang-format off
const std::string kInplacedOpWhiteList[] = { // NOLINT
    "sigmoid",
    "exp",
    "relu",
    "tanh",
    "sqrt",
    "ceil",
    "floor",
    "reciprocal",
    "relu6",
    "soft_relu",
    "hard_sigmoid",
    "batch_norm",
    "batch_norm_grad",
    "sum",
    "sum_grad",
    "scale",
    "reshape",
    "elementwise_add",
    "elementwise_add_grad",
};
// clang-format on

namespace paddle {
namespace framework {
namespace details {

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
static inline std::string NodeDebugString(ir::Node* var) {
  std::ostringstream os;
  if (var->IsCtrlVar()) {
    os << "kControlDepVarName"
       << " ";
  } else if (var->IsOp()) {
    os << "kOperation"
       << " " << var->Name();
    PADDLE_ENFORCE(var->Op() != nullptr && var->Op()->Type() == var->Name());
  } else if (var->IsVar()) {
    os << "kVariable"
       << " " << var->Name();
    PADDLE_ENFORCE(var->Var() != nullptr && var->Var()->Name() == var->Name());
  } else {
    PADDLE_THROW("Unknown node type.");
  }
  return os.str();
}

static inline std::string OpDebugString(ir::Node* var) {
  ir::Node* op = var;
  if (var->IsVar()) op = var->inputs.at(0);
  std::stringstream os;
  os << op->Name() << " : ";

  os << "Input ";
  VLOG(3) << op->Name();
  for (auto* var : op->inputs) {
    if (var->IsVar() && !var->IsCtrlVar()) {
      PADDLE_ENFORCE(var->Var() != nullptr && var->Var()->Name() == var->Name(),
                     "unmatched desc and var");
      // os << var << ":" << var->Name() << " ";
      os << var->Name() << " ";
    }
  }
  os << "Output ";
  VLOG(3) << op->Name();
  for (auto* var : op->outputs) {
    VLOG(3) << var;
    VLOG(3) << var->Name();
    if (!var->IsVar()) {
      VLOG(3) << "error";
    }
    // VLOG(3) << var->Var()->Name();
    if (var->IsVar() && !var->IsCtrlVar()) {
      PADDLE_ENFORCE(var->Var() != nullptr && var->Var()->Name() == var->Name(),
                     "unmatched desc and var");
      // os << var << ":" << var->Name() << " ";
      os << var->Name() << " ";
    }
    if (var->Name() == "fc_10.tmp_0") {
      VLOG(3) << NodeDebugString(var);
    }
  }
  return os.str();
}

static inline ir::Node* GetNextCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
138 139 140 141
  // if next op is inplaced, then return the output var
  // otherwise return nullptr
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
  ir::Node* inplaced_var = nullptr;
142 143 144 145 146
  for (auto* next_op : var->outputs) {
    for (auto* output : next_op->outputs) {
      if (output->IsVar() && !output->IsCtrlVar() &&
          output->Name() == var->Name()) {
        inplaced_var = output;
D
dzhwinter 已提交
147 148 149 150 151 152
      }
    }
  }
  return inplaced_var;
}

153
static inline ir::Node* GetPrevCascadeInplacedVar(ir::Node* var) {
D
dzhwinter 已提交
154
  PADDLE_ENFORCE(var && var->IsVar() && !var->IsCtrlVar());
155 156 157 158 159 160 161 162 163 164 165
  auto* prev_op = var->inputs.at(0);
  auto input_it = std::find_if(prev_op->inputs.begin(), prev_op->inputs.end(),
                               [&](ir::Node* node) {
                                 if (node->IsVar() && !node->IsCtrlVar() &&
                                     node->Name() == var->Name()) {
                                   return true;
                                 } else {
                                   return false;
                                 }
                               });
  return input_it == prev_op->inputs.end() ? nullptr : *input_it;
D
dzhwinter 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}

template <typename Container>
static inline bool ConnectByCtrlVar(const Container& group1,
                                    const Container& group2) {
  bool connected = false;
  std::unordered_set<ir::Node*> outputs;
  for (auto* op : group1) {
    for (auto* var : op->outputs) {
      if (var->IsCtrlVar()) outputs.emplace(var);
    }
  }
  for (auto* op : group2) {
    for (auto* var : op->inputs) {
      if (outputs.count(var)) connected = true;
    }
  }
  return connected;
}

InplacePass::InplacePass() : Pass() {
  if (FLAGS_enable_inplace_whitelist) {
    for (auto& s : kInplacedOpWhiteList) {
      whitelist_.emplace(s);
    }
  }
}

void InplacePass::InitSSAGraphNodes() const {
  std::unordered_map<std::string, std::unordered_set<ir::Node*>> all_vars;
  for (auto* op : view_.AllOps()) {
    for (auto* node : op->inputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
    for (auto* node : op->outputs) {
      if (!node->IsVar() || node->IsCtrlVar()) continue;
      if (all_vars[node->Name()].count(node) == 0) {
        all_vars[node->Name()].emplace(node);
        var_nodes_[node->Name()].emplace_back(node);
      }
    }
  }
}

std::unique_ptr<ir::Graph> InplacePass::ApplyImpl(
    std::unique_ptr<ir::Graph> graph) const {
  var_nodes_.clear();
  view_.Build(graph.get());
  InitSSAGraphNodes();

220 221
  std::unique_ptr<SSAGraphPrinter> printer(new SSAGraphPrinterImpl);

D
dzhwinter 已提交
222 223 224 225 226 227
  for (auto* op : view_.AllOps()) {
    if (FLAGS_enable_inplace_whitelist && !whitelist_.count(op->Name()))
      continue;
    TryInplaceOpInputOutput(op, graph.get());
  }
  graph->ResolveHazard(var_nodes_);
228 229 230 231 232 233 234 235

  constexpr char graph_path[] = "ir_graph_inplaced.txt";
  std::unique_ptr<std::ostream> fout(new std::ofstream(graph_path));
  PADDLE_ENFORCE(fout->good());
  printer->Print(*graph, *fout);
  // for(auto* op : view_.AllOps()) {
  //   VLOG(3) << OpDebugString(op);
  // }
D
dzhwinter 已提交
236 237 238 239 240 241 242
  return graph;
}

void InplacePass::InplaceModifyDesc(const std::string& var,
                                    const std::string& cache_var,
                                    const size_t& idx) const {
  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
243
    ir::Node* op = view_.AllOps()[i];
D
dzhwinter 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    PADDLE_ENFORCE(op->IsOp() && op->Op());
    auto* op_desc = op->Op();
    op_desc->RenameInput(var, cache_var);
    op_desc->RenameOutput(var, cache_var);
    if (op_desc->Block()->HasVar(var)) op_desc->Block()->RemoveVar(var);
    op_desc->Flush();
  }
}

void InplacePass::InplaceModifyVar(const std::string& var,
                                   const std::string& cache_var,
                                   const size_t& idx, ir::Graph* graph) const {
  PADDLE_ENFORCE(var_nodes_[var].size() >= 1 &&
                 var_nodes_[var].at(0)->Var() != nullptr);
  std::unique_ptr<VarDesc> var_desc(new VarDesc(*var_nodes_[var].at(0)->Var()));
  var_desc->SetName(cache_var);

  for (size_t i = idx; i < view_.AllOps().size(); ++i) {
    auto* op = view_.AllOps()[i];

    // redirect the input to the latest version of cache_var
    for (auto* node : op->inputs) {
      if (node->Name() == var) {
267 268 269
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);

D
dzhwinter 已提交
270 271 272
        // swap node to cache_node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
273 274 275 276 277
        PADDLE_ENFORCE(node->inputs.size() == 1 && node->inputs[0]->IsOp());
        auto* prev_op = node->inputs[0];
        std::replace(prev_op->outputs.begin(), prev_op->outputs.end(), node,
                     cache_node);
        cache_node->inputs.emplace_back(prev_op);
D
dzhwinter 已提交
278 279 280 281
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
282 283 284 285 286 287 288

        // release unused var in graph. Because python side memory optimize
        // may reused the var in same name, so we only clear the var node
        // after current inplaced index.
        graph->RemoveNode(node);
        auto& nodes = var_nodes_.at(var);
        nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
D
dzhwinter 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
      }
    }

    // if we need to rename the output,
    // always create a newer version of cache_var
    for (auto* node : op->outputs) {
      if (node->Name() == var) {
        ir::Node* cache_node = graph->CreateVarNode(var_desc.get());
        var_nodes_[cache_var].emplace_back(cache_node);
        // swap node to cache node
        cache_node->outputs.insert(cache_node->outputs.end(),
                                   node->outputs.begin(), node->outputs.end());
        cache_node->inputs.emplace_back(op);
        std::replace(op->outputs.begin(), op->outputs.end(), node, cache_node);
        for (auto* next_op : node->outputs) {
          std::replace(next_op->inputs.begin(), next_op->inputs.end(), node,
                       cache_node);
        }
307 308 309 310 311

        // release unsed var in graph
        graph->RemoveNode(node);
        auto& nodes = var_nodes_.at(var);
        nodes.erase(std::remove(nodes.begin(), nodes.end(), node), nodes.end());
D
dzhwinter 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
      }
    }
  }
}

void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
                                          ir::Graph* graph) const {
  PADDLE_ENFORCE(op->Op() != nullptr && op->Op()->Block() != nullptr,
                 "op_desc is nullptr");
  // 3 pre-requirments need to meet if the op want to inplaced.
  // 1. infer_inplace_ is registered.
  auto* op_desc = op->Op();
  auto& infer_inplace =
      OpInfoMap::Instance().Get(op_desc->Type()).infer_inplace_;
  if (!static_cast<bool>(infer_inplace)) return;
  PADDLE_ENFORCE(static_cast<bool>(infer_inplace),
                 "%s's infer_inplace has not been registered", op_desc->Type());

  auto* block = op_desc->Block();
  auto in_to_outs = infer_inplace(*op_desc, block);

  auto& all_ops = view_.AllOps();
  auto cursor = std::find(all_ops.begin(), all_ops.end(), op);
  size_t idx = std::distance(all_ops.begin(), cursor);
336
  VLOG(3) << op->Name() << idx;
D
dzhwinter 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

  for (auto& pair : in_to_outs) {
    auto& in_var_name = pair.first;
    auto& out_var_name = pair.second;
    auto* in_node = view_.GetNodeByName(in_var_name, op->inputs);
    auto* out_node = view_.GetNodeByName(out_var_name, op->outputs);
    // 2. there is no external pending op on the input node
    if (view_.PendingOpsOnVar(in_node).size() > 1) {
      VLOG(3) << string::Sprintf(
          "!!! %s input has external dependency, can not inplaced,  %s => %s "
          "skiped",
          op->Name(), out_var_name, in_var_name);
      continue;
    }
    // 3. if output reuse input inplaced, the dependency group is not changed.
    // For detail, check
    // the function description in "OutConnectInputByCtrlVar"
    if (view_.OutConnectInputByCtrlVar(in_node, out_node)) {
      VLOG(3) << string::Sprintf(
          "!!! %s input output connect by ctrl var, cannot inplaced,  %s => %s "
          "skiped",
          op->Name(), out_var_name, in_var_name);
      continue;
    }
    VLOG(3) << string::Sprintf("!!! %s,  %s => %s inplaced", op->Name(),
                               out_var_name, in_var_name);
363
    // VLOG(3) << "Out " << OpDebugString(op);
D
dzhwinter 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    InplaceModifyDesc(out_var_name, in_var_name, idx);
    InplaceModifyVar(out_var_name, in_var_name, idx, graph);
  }
}

ir::Node* GraphView::GetNodeByName(const std::string& name,
                                   const std::vector<ir::Node*>& nodes) const {
  // nodes should be op->inputs/outputs
  // node in same node do have different name.
  std::unordered_set<std::string> nodes_in_op;
  bool has_dup_node =
      std::all_of(nodes.begin(), nodes.end(), [&nodes_in_op](ir::Node* node) {
        if (!node->IsVar() || node->IsCtrlVar() || node->Var() == nullptr) {
          if (nodes_in_op.count(node->Name())) return true;
          nodes_in_op.emplace(node->Name());
        }
        return false;
      });
  PADDLE_ENFORCE(has_dup_node == false, "nodes has same name!");
  ir::Node* node = nullptr;
  for (auto* it : nodes) {
    if (!it->IsVar() || it->IsCtrlVar() || it->Var() == nullptr) continue;
    if (it->Name() == name) {
      node = it;
      break;
    }
  }
  PADDLE_ENFORCE(node != nullptr,
                 string::Sprintf("Not found var %s in nodes!", name));
  return node;
}

std::vector<ir::Node*> GraphView::PendingOpsOnVar(ir::Node* node) {
397 398 399 400 401 402 403 404 405 406
  // get the pending ops depends on same var node.
  // because node also maybe a inplaced variable, so need to backtrack all the
  // previous inplaced vars.
  std::vector<ir::Node*> pending_ops;
  ir::Node* p = node;
  while (p != nullptr) {
    pending_ops.insert(pending_ops.end(), p->outputs.begin(), p->outputs.end());
    p = GetPrevCascadeInplacedVar(p);
  }
  return pending_ops;
D
dzhwinter 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
}

void GraphView::Build(ir::Graph* g) { ops_ = SortOpLikeDescOrder(*g); }

const std::vector<ir::Node*> GraphView::AllOps() { return ops_; }

bool GraphView::OutConnectInputByCtrlVar(ir::Node* in_var, ir::Node* out_var) {
  // assume v_a0, v_a1 is variable. v_a0 -> v_a0 means already inplaced.
  // v_a1 -> v_a1 means already inplaced.
  // Currently we make decision to check if the v_a0 -> v_a1 can be inplace.
  //
  // v_a0
  //  +
  //  |
  //  v
  // v_a0
  //  +
  //  |
  //  v
  // v_a1
  //  +
  //  |
  //  v
  // v_a1
  // start from the first inplaced input v_a0(on the top one).
  // Do a DFSSearch, get all its paths. If there is one path connect
  // the in_var and out_var which contains control dep var.
  // Means there a control path. out_var can not be inplaced use in_var.

  std::unordered_set<ir::Node *> out_var_set, in_var_set;
  ir::Node* out = out_var;
  // get the ops with same output name
  while (out != nullptr) {
    out_var_set.emplace(out);
441
    out = GetNextCascadeInplacedVar(out);
D
dzhwinter 已提交
442 443 444 445 446 447
  }

  // get ops with same input name
  ir::Node* in = in_var;
  while (in != nullptr) {
    in_var_set.emplace(in);
448
    in = GetPrevCascadeInplacedVar(in);
D
dzhwinter 已提交
449 450 451 452 453 454 455 456 457 458 459
  }
  // find if there is path with control dep var connect the in_var_set and
  // out_var_set
  return ConnectByCtrlVar(in_var_set, out_var_set);
}

}  // namespace details
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(inplace_pass, paddle::framework::details::InplacePass);