dropout_op.cc 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
S
sneaxiy 已提交
16
#include <memory>
P
phlrain 已提交
17
#include <string>
X
Xinghai Sun 已提交
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

28
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
33
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
34
      ctx->SetOutputDim("Mask", x_dims);
35
    }
Q
Qiao Longfei 已提交
36
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
37 38 39 40 41
  }
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
42
  void Make() override {
X
Xinghai Sun 已提交
43 44
    AddInput("X", "The input of dropout op.");
    AddOutput("Out", "The output of dropout op.");
45
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
46

K
Kexin Zhao 已提交
47
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
48 49
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
C
refine  
chengduoZH 已提交
50 51
          PADDLE_ENFORCE(drop_p >= 0.0f && drop_p <= 1.0f,
                         "'dropout_prob' must be between 0.0 and 1.0.");
C
chengduoZH 已提交
52
        });
53 54 55 56
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
57 58 59 60 61 62 63
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(false);
K
Kexin Zhao 已提交
64
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
P
phlrain 已提交
65 66 67 68 69 70 71 72 73
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
74
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
          PADDLE_ENFORCE(
              type == "downgrade_in_infer" || type == "upscale_in_train",
              "dropout_implementation can only be downgrade_in_infer or "
              "upscale_in_train");
        });
K
Kexin Zhao 已提交
88

89 90 91
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
92
Dropout refers to randomly dropping out units in a nerual network. It is a
93 94
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
95
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
96 97
are set equal to their corresponding inputs.

98
)DOC");
X
Xinghai Sun 已提交
99 100 101 102 103 104 105
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

106
  void InferShape(framework::InferShapeContext* ctx) const override {
107 108
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      "GradOp is only callable when is_test is false");
Q
Qiao Longfei 已提交
109 110 111 112 113 114

    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
115 116 117 118 119

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
120 121 122 123

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
124 125 126
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
127
  }
S
sneaxiy 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
};

class DropoutGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("dropout_grad");
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetInput("Mask", Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
X
Xinghai Sun 已提交
143 144 145 146 147 148 149
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
150
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
S
sneaxiy 已提交
151
                  ops::DropoutGradOpDescMaker);
152
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
153
REGISTER_OP_CPU_KERNEL(
P
phlrain 已提交
154 155
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, double>);
X
Xinghai Sun 已提交
156
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
157
    dropout_grad,
P
phlrain 已提交
158 159
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, double>);