SequenceSliceLayer.cpp 7.9 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"

namespace paddle {

class SequenceSliceLayer : public Layer {
public:
  explicit SequenceSliceLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;

  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;

private:
  // TODO(caoying)
  // Here selSubSeqIdx is automatically converted from real to int
  // This is very dangerous if user fill this matrix himself, invalid data
  // may occur. The selected indices should be stored in CpuSparseMatrix
  // with SparseValueType set to NO_VALUE.
  MatrixPtr startIdsOnCpu_;
  MatrixPtr endIdsOnCpu_;

  std::vector<int> selectedRows_;
  IVectorPtr rowIndice_;
  std::vector<std::vector<int>> inputSeqInfoVec_;
  std::vector<int> outSubSeqStartPos_;
  std::vector<int> outSeqStartPos_;

  void checkInputs();
  void copySliceIdsToCpu();
  void calSelectedRows(const MatrixPtr starts, const MatrixPtr ends);
};

REGISTER_LAYER(seq_slice, SequenceSliceLayer);

bool SequenceSliceLayer::init(const LayerMap& layerMap,
                              const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);
  CHECK_GE(inputLayers_.size(), 2U);
  CHECK_LE(inputLayers_.size(), 3U);

  setNeedSequenceInfo(false);
  return true;
}

void SequenceSliceLayer::checkInputs() {
  const Argument& inputSeq = getInput(0);
  CHECK(inputSeq.hasSeq()) << "The first input of sequence slic layer "
                           << "must be a sequence.";
  // Check inputs
  const MatrixPtr indices1 = getInputValue(1);
  CHECK_EQ(indices1->getHeight(),
           inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
                                : inputSeq.getNumSequences())
      << "Height of the second input should be equal to number of sequence "
      << "in the first input.";
  if (inputLayers_.size() == 3) {
    const MatrixPtr indices2 = getInputValue(2);
    CHECK_EQ(indices2->getHeight(), indices1->getHeight())
        << "start indices and end indices should have the same height.";
    CHECK_EQ(indices2->getWidth(), indices1->getWidth())
        << "start indices and end indices should have the same Width.";
  }
}

void SequenceSliceLayer::copySliceIdsToCpu() {
  if (!useGpu_) {
    if (inputLayers_.size() == 2U) {
      if (config_.select_first()) {
        startIdsOnCpu_ = getInputValue(1);
        endIdsOnCpu_ = nullptr;
      } else {
        startIdsOnCpu_ = nullptr;
        endIdsOnCpu_ = getInputValue(1);
      }
    } else if (inputLayers_.size() == 3U) {
      startIdsOnCpu_ = getInputValue(1);
      endIdsOnCpu_ = getInputValue(2);
    }
    return;
  }

  const MatrixPtr indices1 = getInputValue(1);
  if (inputLayers_.size() == 2U) {
    if (config_.select_first()) {
      Matrix::resizeOrCreate(startIdsOnCpu_,
                             indices1->getHeight(),
                             indices1->getWidth(),
                             false /* trans */,
                             false /* useGpu */);
      startIdsOnCpu_->copyFrom(*indices1);
      endIdsOnCpu_ = nullptr;
    } else {
      Matrix::resizeOrCreate(endIdsOnCpu_,
                             indices1->getHeight(),
                             indices1->getWidth(),
                             false /* trans */,
                             false /* useGpu */);
      endIdsOnCpu_->copyFrom(*indices1);
      startIdsOnCpu_ = nullptr;
    }
  } else if (inputLayers_.size() == 3U) {
    Matrix::resizeOrCreate(startIdsOnCpu_,
                           indices1->getHeight(),
                           indices1->getWidth(),
                           false /* trans */,
                           false /* useGpu */);
    startIdsOnCpu_->copyFrom(*indices1);

    const MatrixPtr indices2 = getInputValue(2);
    Matrix::resizeOrCreate(endIdsOnCpu_,
                           indices2->getHeight(),
                           indices2->getWidth(),
                           false /* trans */,
                           false /* useGpu */);
    endIdsOnCpu_->copyFrom(*indices2);
  }
}

void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
                                         const MatrixPtr ends) {
  outSeqStartPos_.resize(1, 0);
  outSubSeqStartPos_.resize(1, 0);
  selectedRows_.clear();

  size_t beamSize = starts ? starts->getWidth() : ends->getWidth();
  // iterate over sequence
  size_t rowIdx = 0;
  for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) {
    // iterate over sub-sequence in a sequence
    for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) {
      // iterate over each index for slicing.
      for (size_t k = 0; k < beamSize; ++k) {
        if (starts) {
          if (starts->getElement(rowIdx, k) == -1.) break;
        } else if (ends->getElement(rowIdx, k) == -1.)
          break;

        int begPos = inputSeqInfoVec_[i][j];
        if (starts) begPos += starts->getElement(rowIdx, k);

        int endPos = inputSeqInfoVec_[i][j + 1] - 1;
        if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);

        int seqLen = endPos - begPos + 1;
        CHECK(seqLen);
        for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
        inputSeqInfoVec_.size() > 1
            ? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
            : outSeqStartPos_.push_back(outSeqStartPos_.back() + seqLen);
      }
      rowIdx++;
    }
    if (inputSeqInfoVec_.size() > 1)
      outSeqStartPos_.push_back(outSubSeqStartPos_.back());
  }

  if (useGpu_) {
    rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
    rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
  } else {
    rowIndice_ =
        IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
  }

  // create the sequence information for the output.
  ICpuGpuVector::resizeOrCreate(
      output_.sequenceStartPositions, outSeqStartPos_.size(), false);
  output_.sequenceStartPositions->copyFrom(
      outSeqStartPos_.data(), outSeqStartPos_.size(), false);

  if (inputSeqInfoVec_.size() > 1) {
    ICpuGpuVector::resizeOrCreate(
        output_.subSequenceStartPositions, outSubSeqStartPos_.size(), false);
    output_.subSequenceStartPositions->copyFrom(
        outSubSeqStartPos_.data(), outSubSeqStartPos_.size(), false);
  }
}

void SequenceSliceLayer::forward(PassType passType) {
  Layer::forward(passType);
  checkInputs();

  const Argument& inputSeq = getInput(0);
  inputSeqInfoVec_.clear();
  Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
                              inputSeq.subSequenceStartPositions,
                              inputSeqInfoVec_);
  copySliceIdsToCpu();

  // calculate the selected row indices in a batch,
  // and build the output sequence information.
  calSelectedRows(startIdsOnCpu_ ? startIdsOnCpu_ : nullptr,
                  endIdsOnCpu_ ? endIdsOnCpu_ : nullptr);

  resetOutput(selectedRows_.size(), getSize());

  getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
}

void SequenceSliceLayer::backward(const UpdateCallback& callback) {
  MatrixPtr inputSeqGrad = getInputGrad(0);
  MatrixPtr outputGrad = getOutputGrad();

  outputGrad->addToRows(*inputSeqGrad, *rowIndice_);
}

}  // namespace paddle