KmaxSeqScoreLayer.cpp 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"

namespace paddle {

class KmaxSeqScoreLayer : public Layer {
private:
  MatrixPtr scores_;
  size_t beamSize_;
  void kmaxScorePerSeq(const real* score,
                       real* sortedRes,
                       const ICpuGpuVectorPtr seqStartPos);

public:
  explicit KmaxSeqScoreLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;

  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;
};

REGISTER_LAYER(kmax_seq_score, KmaxSeqScoreLayer);

bool KmaxSeqScoreLayer::init(const LayerMap& layerMap,
                             const ParameterMap& parameterMap) {
  bool ret = Layer::init(layerMap, parameterMap);
42
  CHECK_EQ(1U, inputLayers_.size());
43 44

  beamSize_ = config_.beam_size();
45
  CHECK_GE(beamSize_, 1U);
46 47

  setNeedSequenceInfo(false);
48
  setNeedGradient(false);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  return ret;
}

void KmaxSeqScoreLayer::kmaxScorePerSeq(const real* scores,
                                        real* sortedIds,
                                        const ICpuGpuVectorPtr seqStartPos) {
  int* starts = seqStartPos->getMutableData(false);
  std::vector<real> indices;
  for (size_t i = 0; i < seqStartPos->getSize() - 1; ++i) {
    int seqLen = starts[i + 1] - starts[i];
    int k = std::min(static_cast<int>(beamSize_), seqLen);

    indices.resize(seqLen, 0);
    std::iota(begin(indices), end(indices), 0.);
    std::vector<real> tmpScore(scores + starts[i], scores + starts[i + 1]);
    std::partial_sort(
        begin(indices),
        begin(indices) + k,
        end(indices),
        [&](size_t a, size_t b) { return tmpScore[a] > tmpScore[b]; });
    memcpy(sortedIds + (i * beamSize_), indices.data(), k * sizeof(real));
  }
}

void KmaxSeqScoreLayer::forward(PassType passType) {
  Layer::forward(passType);

  const Argument& input = getInput(0);
  const MatrixPtr inputScore = getInputValue(0);

  CHECK(input.hasSeq() || input.hasSubseq())
      << "input of " << getName()
      << " must be a sequence or a nested sequence.";
  CHECK_EQ(input.value->getWidth(), 1UL)
      << "input of " << getName()
      << " is score over a sequence or a nested sequence, so its width "
      << " must be 1.";

  if (useGpu_) {
    // this Layer runs only in CPU, if the model is runing on GPU,
    // then copy the input to this layer from GPU to CPU.
    Matrix::resizeOrCreate(scores_,
                           inputScore->getHeight(),
                           1,
                           false /* trans */,
                           false /* useGpu */);
    scores_->copyFrom(*inputScore);
  } else {
    scores_ = inputScore;
  }

C
caoying03 已提交
100 101 102 103 104
  // TODO(caoying)
  // Here selSubSeqIdx is automatically converted from real to int
  // This is very dangerous if user fill this matrix himself, invalid data may
  // occur. The selected indices should be stored in
  // CpuSparseMatrix with SparseValueType set to NO_VALUE.
105 106 107 108 109 110
  Matrix::resizeOrCreate(
      output_.value,
      input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
      beamSize_,
      false,
      false);
111 112
  output_.value->one();
  output_.value->mulScalar(-1.);
113

114 115 116 117
  kmaxScorePerSeq(scores_->getData(),
                  output_.value->getData(),
                  input.hasSubseq() ? input.subSequenceStartPositions
                                    : input.sequenceStartPositions);
118 119 120 121 122
}

void KmaxSeqScoreLayer::backward(const UpdateCallback& callback) {}

}  // namespace paddle