activation_op.cc 3.3 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
16 17 18 19 20 21
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
22
class ActivationOpConverter : public OpConverter {
L
Luo Tao 已提交
23
 public:
N
nhzlx 已提交
24
  ActivationOpConverter() {}
L
Luo Tao 已提交
25
  void operator()(const framework::proto::OpDesc& op,
L
Luo Tao 已提交
26
                  const framework::Scope& scope, bool test_mode) override {
27 28
    // Here the two nullptr looks strange, that's because the
    // framework::OpDesc's constructor is strange.
F
fengjiayi 已提交
29
    framework::OpDesc op_desc(op, nullptr);
30
    VLOG(3)
N
nhzlx 已提交
31 32 33
        << "convert a fluid Activation op to tensorrt activation layer whose "
           "type is "
        << op_type_;
L
Luo Tao 已提交
34
    const nvinfer1::ITensor* input_tensor =
35
        engine_->GetITensor(op_desc.Input("X")[0]);
N
nhzlx 已提交
36 37 38 39 40 41

    auto op_pair = ops.find(op_type_);
    if (op_pair == ops.end()) {
      PADDLE_THROW("Wrong activation op type!");
    }

L
Luo Tao 已提交
42 43
    nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Activation, *const_cast<nvinfer1::ITensor*>(input_tensor),
N
nhzlx 已提交
44
        op_pair->second);
45 46 47 48 49 50 51 52 53

#if IS_TRT_VERSION_GE(5130)
    // max(alpha, min(beta, x))
    if (op_type_ == "relu6") {
      layer->setAlpha(0.);
      layer->setBeta(6.);
    }
#endif

L
Luo Tao 已提交
54
    auto output_name = op_desc.Output("Out")[0];
55 56 57

    RreplenishLayerAndOutput(layer, op_type_, {output_name}, test_mode);
    if (op_desc.HasAttr("out_scale")) {
58
#if IS_TRT_VERSION_GE(5130)
59 60 61
      float out_scale = boost::get<float>(op_desc.GetAttr("out_scale"));
      engine_->SetTensorDynamicRange(layer->getOutput(0), out_scale);
#endif
L
Luo Tao 已提交
62
    }
L
Luo Tao 已提交
63
  }
N
nhzlx 已提交
64 65 66 67 68 69 70 71 72 73 74

 protected:
  std::string op_type_;
  static const std::unordered_map<std::string, nvinfer1::ActivationType> ops;
};

const std::unordered_map<std::string, nvinfer1::ActivationType>
    ActivationOpConverter::ops = {
        {"relu", nvinfer1::ActivationType::kRELU},
        {"sigmoid", nvinfer1::ActivationType::kSIGMOID},
        {"tanh", nvinfer1::ActivationType::kTANH},
75 76 77
#if IS_TRT_VERSION_GE(5130)
        {"relu6", nvinfer1::ActivationType::kCLIP},
#endif
N
nhzlx 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
};

class ReluOpConverter : public ActivationOpConverter {
 public:
  ReluOpConverter() { op_type_ = "relu"; }
};

class SigmoidOpConverter : public ActivationOpConverter {
 public:
  SigmoidOpConverter() { op_type_ = "sigmoid"; }
};

class TanhOpConverter : public ActivationOpConverter {
 public:
  TanhOpConverter() { op_type_ = "tanh"; }
L
Luo Tao 已提交
93 94
};

95 96 97 98 99
class Relu6OpConverter : public ActivationOpConverter {
 public:
  Relu6OpConverter() { op_type_ = "relu6"; }
};

L
Luo Tao 已提交
100 101 102
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
103 104

REGISTER_TRT_OP_CONVERTER(relu, ReluOpConverter);
N
nhzlx 已提交
105 106
REGISTER_TRT_OP_CONVERTER(sigmoid, SigmoidOpConverter);
REGISTER_TRT_OP_CONVERTER(tanh, TanhOpConverter);
107
REGISTER_TRT_OP_CONVERTER(relu6, Relu6OpConverter);