test_dgc_optimizer.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest

import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
21
import paddle.fluid.regularizer as regularizer
22
import paddle.fluid.clip as clip
23 24 25 26 27 28 29 30 31 32
import paddle.compat as cpt
from paddle.fluid.backward import append_backward


class TestDGCMomentumOptimizer(unittest.TestCase):
    class MockDGCMomentum(optimizer.DGCMomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
33
            return self._u_velocity_acc_str
34

35 36 37
    def check_dgc_momentum_optimizer(self,
                                     dims=[5, 10, 8],
                                     name="momentum",
38 39
                                     regularization=None,
                                     use_recompute=False):
40 41 42 43 44 45 46 47
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[dims[0], dims[1]],
            lod_level=0,
            name="mul.x",
48 49 50
            optimize_attr={'learning_rate': 1.1},
            regularizer=None if regularization is not None else
            regularizer.L2DecayRegularizer(2e-4))
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        mul_y = block.create_var(
            dtype="float32",
            shape=[dims[1], dims[2]],
            lod_level=0,
            name="mul.y")
        mul_out = block.create_var(
            dtype="float32",
            shape=[dims[0], dims[2]],
            lod_level=0,
            name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        learning_rate = 0.01
68

69
        dgc_momentum_optimizer = self.MockDGCMomentum(
70 71 72
            learning_rate=learning_rate,
            momentum=0.2,
            rampup_begin_step=0,
73
            num_trainers=2,
74 75
            regularization=regularization,
            grad_clip=clip.GradientClipByNorm(1.0))
76 77 78 79 80 81 82

        if use_recompute:
            dgc_momentum_optimizer = optimizer.RecomputeOptimizer(
                dgc_momentum_optimizer)
            dgc_momentum_optimizer.get_accumulators = dgc_momentum_optimizer._optimizer.get_accumulators
            dgc_momentum_optimizer.get_velocity_str = dgc_momentum_optimizer._optimizer.get_velocity_str

83 84 85 86 87 88
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        # params_grads = append_backward(mean_out)
        params_grads = dgc_momentum_optimizer.backward(mean_out)
89
        accumulator_count = 1 if name == "momentum" else 2
90
        self.assertEqual(len(params_grads), 1)
91 92
        self.assertEqual(
            len(dgc_momentum_optimizer.get_accumulators()), accumulator_count)
93 94 95 96 97 98 99 100 101
        with framework.program_guard(program, init_program):
            opts = dgc_momentum_optimizer.apply_gradients(params_grads)
        self.assertEqual(len(opts), 2)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts], ["scale", name])
        self.assertFalse(sgd_op.attr('use_nesterov'))

        # Check accumulators
        accumulators = dgc_momentum_optimizer.get_accumulators()
102
        self.assertEqual(len(accumulators), accumulator_count)
103 104 105 106 107 108 109 110
        self.assertTrue(
            dgc_momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[dgc_momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
111
        self.assertEqual(len(init_ops), 1)
112 113 114
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

115 116 117 118 119 120 121 122
        # check dgc op regularization coeff
        train_ops = program.global_block().ops
        for op in train_ops:
            if op.type == "dgc":
                coeff = 2e-4 if regularization is None else 1e-4
                self.assertAlmostEqual(op.attr('regular_coeff'), coeff)
                print("dgc regular_coeff=" + str(coeff))

123 124 125 126 127 128 129 130 131 132
    def test_tpyeError(self):
        # the type of DGCMomentumOptimizer(grad_clip=) must be 'GradientClipByNorm'
        with self.assertRaises(TypeError):
            dgc_momentum_optimizer = self.MockDGCMomentum(
                learning_rate=0.01,
                momentum=0.2,
                rampup_begin_step=0,
                num_trainers=2,
                grad_clip=clip.GradientClipByGlobalNorm(1.0))

133
    def test_momentum_without_dgc(self):
134 135
        self.check_dgc_momentum_optimizer(
            regularization=regularizer.L1Decay(1e-4))
136 137 138 139

    def test_momentum_with_dgc(self):
        # 16 * 1024 = 16384, use dgc momentum
        self.check_dgc_momentum_optimizer(
140 141 142
            dims=[16, 1024, 8],
            name="dgc_momentum",
            regularization=regularizer.L2Decay(1e-4))
143

144 145 146 147
        # check param.regularizer in dgc
        self.check_dgc_momentum_optimizer(
            dims=[16, 1024, 8], name="dgc_momentum")

148 149 150 151 152 153 154 155
    def test_momentum_with_dgc_recompute(self):
        # 16 * 1024 = 16384, use dgc momentum
        self.check_dgc_momentum_optimizer(
            dims=[16, 1024, 8],
            name="dgc_momentum",
            regularization=regularizer.L2Decay(1e-4),
            use_recompute=True)

156 157 158

if __name__ == '__main__':
    unittest.main()