conv_transpose_op.cc 13.8 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_transpose_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
32
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
33

C
chengduoZH 已提交
34 35 36 37 38 39 40 41 42
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
43
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
44
                    "dimension should be the same.");
C
chengduoZH 已提交
45 46 47
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
48 49 50
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
                    "In ConvTransposeOp, The input channel should be the same "
                    "as the number of filters.");
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1]});
C
chengduoZH 已提交
53
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
54
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
C
chengduoZH 已提交
55
    output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] +
C
chengduoZH 已提交
56
                           filter_extent);
C
chengduoZH 已提交
57
  }
C
chengduoZH 已提交
58
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
59 60
}

61 62 63
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
64 65 66
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
67 68 69 70 71 72 73 74 75 76 77 78 79 80
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

81 82
Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
83 84 85 86 87
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
88 89
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
90 91 92 93 94 95 96 97
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
98
  AddOutput("Output",
C
chengduoZH 已提交
99
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
100
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
101 102 103 104 105 106

  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
107 108
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
109
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
110
      "convolution transpose operator.")
C
chengduoZH 已提交
111
      .SetDefault({1, 1});
C
chengduoZH 已提交
112 113
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
114
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
115
      "transpose operator.")
C
chengduoZH 已提交
116
      .SetDefault({0, 0});
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
136
  AddComment(R"DOC(
C
chengduoZH 已提交
137 138
Convolution2D Transpose Operator.

C
chengduoZH 已提交
139
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
140
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
141
parameters is checked in the infer-shape.
C
chengduoZH 已提交
142 143 144 145 146 147 148
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
149
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
150

C
chengduoZH 已提交
151 152
Example:
  Input:
C
chengduoZH 已提交
153 154
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
155
  Output:
C
chengduoZH 已提交
156 157 158 159 160 161
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f
  $$
C
chengduoZH 已提交
162 163 164
)DOC");
}

165 166
Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto,
                                               OpAttrChecker* op_checker)
C
chengduoZH 已提交
167
    : OpProtoAndCheckerMaker(proto, op_checker) {
C
chengduoZH 已提交
168 169 170 171 172 173
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
174 175
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
176 177 178
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
179 180
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
181
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
182
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
183 184 185 186
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
187 188
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
189 190 191 192 193 194 195

  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
196
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
197
                            "(vector<int> default:{1, 1, 1}), the "
198
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
199
                            "convolution transpose operator.")
C
chengduoZH 已提交
200
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
201
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
202
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
203
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
204
      .SetDefault({0, 0, 0});
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
224
  AddComment(R"DOC(
C
chengduoZH 已提交
225 226
Convolution3D Transpose Operator.

C
chengduoZH 已提交
227
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
228
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
229
parameters is checked in the infer-shape.
C
chengduoZH 已提交
230 231 232 233 234 235 236 237
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
238
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
239 240

Example:   
C
chengduoZH 已提交
241
  Input:
C
chengduoZH 已提交
242 243
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
244
  Output:
C
chengduoZH 已提交
245 246 247 248 249 250 251
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f
  $$
C
chengduoZH 已提交
252 253 254
)DOC");
}

C
chengduoZH 已提交
255
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
256 257 258 259 260 261 262 263 264 265
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

266 267 268
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
269 270 271
  if (paddle::platform::is_cpu_place(ctx.GetPlace())) {
    use_cudnn = false;
  }
272 273 274 275 276 277 278 279 280 281 282 283 284 285
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
286 287 288 289
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
290

C
chengduoZH 已提交
291 292
REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker,
            conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
293 294

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
295
    conv2d_transpose,
Q
QI JUN 已提交
296 297
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
298
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
299
    conv2d_transpose_grad,
Q
QI JUN 已提交
300 301 302
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
303

C
chengduoZH 已提交
304 305
REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker,
            conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
306 307

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
308
    conv3d_transpose,
Q
QI JUN 已提交
309 310
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
311
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
312
    conv3d_transpose_grad,
Q
QI JUN 已提交
313 314 315
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);