spectral_norm_op.h 9.5 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
D
dengkaipeng 已提交
13
#include <vector>
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

using Array1 = Eigen::DSizes<int64_t, 1>;
using Array2 = Eigen::DSizes<int64_t, 2>;
using IndexPair = Eigen::IndexPair<int>;

D
dengkaipeng 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename DeviceContext, typename T>
static inline void TransCompute(const int rank, const Tensor& in, Tensor* out,
                                const std::vector<int>& perm,
                                const DeviceContext& dev_ctx) {
  if (rank <= 1 || rank > 5) {
    PADDLE_THROW("Invalid weight rank.");
  }

  switch (rank) {
    case 2:
      math::Transpose<DeviceContext, T, 2> trans2;
      trans2(dev_ctx, in, out, perm);
      break;
    case 3:
      math::Transpose<DeviceContext, T, 3> trans3;
      trans3(dev_ctx, in, out, perm);
      break;
    case 4:
      math::Transpose<DeviceContext, T, 4> trans4;
      trans4(dev_ctx, in, out, perm);
      break;
    case 5:
      math::Transpose<DeviceContext, T, 5> trans5;
      trans5(dev_ctx, in, out, perm);
      break;
    default:
      break;
D
dengkaipeng 已提交
58 59 60 61 62 63 64 65
  }
}

template <typename DeviceContext, typename T>
static inline void CalcMatrixSigmaAndNormWeight(
    Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters,
    const float eps, const framework::ExecutionContext& ctx) {
  auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
66
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
D
dengkaipeng 已提交
67 68
  auto sigma_t = EigenTensor<T, 2>::From(*sigma);
  auto weight_t = EigenTensor<T, 2>::From(*weight);
69 70
  auto u_t = EigenTensor<T, 2>::From(*u);
  auto v_t = EigenTensor<T, 2>::From(*v);
D
dengkaipeng 已提交
71 72 73 74 75

  const int h = weight->dims()[0];
  const int w = weight->dims()[1];

  for (int i = 0; i < power_iters; i++) {
76
    blas.MatMul(*weight, true, *u, false, T(1), v, T(0));
D
dengkaipeng 已提交
77 78 79 80
    auto v_t_norm =
        v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
            Array1(w));
    v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
81
    blas.MatMul(*weight, false, *v, false, T(1), u, T(0));
D
dengkaipeng 已提交
82 83 84 85 86
    auto u_t_norm =
        u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
            Array1(h));
    u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
  }
87 88 89 90 91
  Tensor weight_v;
  weight_v.mutable_data<T>({h, 1}, ctx.GetPlace());
  blas.MatMul(*weight, false, *v, false, T(1), &weight_v, T(0));
  auto weight_v_t = EigenTensor<T, 2>::From(weight_v);
  sigma_t.device(place) = (u_t * weight_v_t)
D
dengkaipeng 已提交
92 93 94 95 96 97 98 99 100 101 102
                              .sum()
                              .eval()
                              .reshape(Array2(1, 1))
                              .broadcast(Array2(h, w));
  weight_t.device(place) = weight_t / sigma_t;
}

template <typename DeviceContext, typename T>
class SpectralNormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
D
dengkaipeng 已提交
103
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
D
dengkaipeng 已提交
104 105 106 107 108 109 110 111 112
    auto weight = ctx.Input<Tensor>("Weight");
    auto u = ctx.Input<Tensor>("U");
    auto v = ctx.Input<Tensor>("V");
    auto out = ctx.Output<Tensor>("Out");

    int dim = ctx.Attr<int>("dim");
    int power_iters = ctx.Attr<int>("power_iters");
    float eps = ctx.Attr<float>("eps");

D
dengkaipeng 已提交
113 114 115
    const int h = u->dims()[0];
    const int w = v->dims()[0];

D
dengkaipeng 已提交
116
    Tensor weight_mat;
D
dengkaipeng 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    auto dims = weight->dims();
    const int rank = dims.size();
    std::vector<int> real_dims;
    if (dim != 0) {
      std::vector<int> perm;
      perm.push_back(dim);
      real_dims.push_back(dims[dim]);
      for (int i = 0; i < rank; i++) {
        if (i != dim) {
          perm.push_back(i);
          real_dims.push_back(dims[i]);
        }
      }
      weight_mat.mutable_data<T>(framework::make_ddim(real_dims),
                                 ctx.GetPlace());
      TransCompute<DeviceContext, T>(rank, *weight, &weight_mat, perm, dev_ctx);
    } else {
      for (int i = 0; i < rank; i++) {
        real_dims.push_back(i);
      }
      TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
    }
139
    weight_mat = weight_mat.Resize({h, w});
D
dengkaipeng 已提交
140 141

    Tensor sigma;
142
    sigma.mutable_data<T>(weight_mat.dims(), ctx.GetPlace());
D
dengkaipeng 已提交
143 144 145 146
    Tensor uu, vv;
    TensorCopySync(*u, ctx.GetPlace(), &uu);
    TensorCopySync(*v, ctx.GetPlace(), &vv);
    CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
147 148
        &sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat,
        power_iters, eps, ctx);
D
dengkaipeng 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    if (dim != 0) {
      std::vector<int> perm;
      for (int i = 0; i < rank; i++) {
        if (i < dim) {
          perm.push_back(i + 1);
        } else if (i == dim) {
          perm.push_back(0);
        } else {
          perm.push_back(i);
        }
      }
      out->mutable_data<T>(dims, ctx.GetPlace());
      TransCompute<DeviceContext, T>(
          rank, weight_mat.Resize(framework::make_ddim(real_dims)), out, perm,
          dev_ctx);
    } else {
      TensorCopySync(weight_mat.Resize(dims), ctx.GetPlace(), out);
    }
D
dengkaipeng 已提交
168 169 170 171 172 173
  }
};

template <typename DeviceContext, typename T>
class SpectralNormGradKernel : public framework::OpKernel<T> {
 public:
174 175
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
D
dengkaipeng 已提交
176
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
177 178 179 180 181 182 183 184 185 186 187
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
    auto weight = ctx.Input<Tensor>("Weight");
    auto u = ctx.Input<Tensor>("U");
    auto v = ctx.Input<Tensor>("V");
    auto out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto weight_grad = ctx.Output<Tensor>(framework::GradVarName("Weight"));

    int dim = ctx.Attr<int>("dim");
    int power_iters = ctx.Attr<int>("power_iters");
    float eps = ctx.Attr<float>("eps");

D
dengkaipeng 已提交
188 189 190
    const int h = u->dims()[0];
    const int w = v->dims()[0];

191
    Tensor weight_mat, out_grad_mat;
D
dengkaipeng 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    auto dims = weight->dims();
    const int rank = dims.size();
    std::vector<int> real_dims;
    if (dim != 0) {
      std::vector<int> perm;
      perm.push_back(dim);
      real_dims.push_back(dims[dim]);
      for (int i = 0; i < rank; i++) {
        if (i != dim) {
          perm.push_back(i);
          real_dims.push_back(dims[i]);
        }
      }
      weight_mat.mutable_data<T>(framework::make_ddim(real_dims),
                                 ctx.GetPlace());
      out_grad_mat.mutable_data<T>(framework::make_ddim(real_dims),
                                   ctx.GetPlace());
      TransCompute<DeviceContext, T>(rank, *weight, &weight_mat, perm, dev_ctx);
      TransCompute<DeviceContext, T>(rank, *out_grad, &out_grad_mat, perm,
                                     dev_ctx);
    } else {
      for (int i = 0; i < rank; i++) {
        real_dims.push_back(i);
      }
      TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
      TensorCopySync(*out_grad, ctx.GetPlace(), &out_grad_mat);
    }
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    weight_mat = weight_mat.Resize({h, w});
    out_grad_mat = out_grad_mat.Resize({h, w});

    Tensor sigma;
    sigma.mutable_data<T>(weight_mat.dims(), ctx.GetPlace());
    Tensor uu, vv;
    TensorCopySync(*u, ctx.GetPlace(), &uu);
    TensorCopySync(*v, ctx.GetPlace(), &vv);
    CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
        &sigma, &(uu.Resize({h, 1})), &(vv.Resize({w, 1})), &weight_mat,
        power_iters, eps, ctx);

    Tensor uv;
    uv.mutable_data<T>({h, w}, ctx.GetPlace());
    blas.MatMul(uu.Resize({h, 1}), false, vv.Resize({w, 1}), false, T(1), &uv,
                T(0));

D
dengkaipeng 已提交
236
    Tensor weight_grad_mat;
237 238 239 240 241 242 243 244 245
    weight_grad_mat.mutable_data<T>({h, w}, ctx.GetPlace());
    auto weight_grad_mat_t = EigenTensor<T, 2>::From(weight_grad_mat);
    auto weight_mat_t = EigenTensor<T, 2>::From(weight_mat);
    auto out_grad_mat_t = EigenTensor<T, 2>::From(out_grad_mat);
    auto sigma_t = EigenTensor<T, 2>::From(sigma);
    auto uv_t = EigenTensor<T, 2>::From(uv);
    weight_mat_t.device(place) =
        weight_mat_t.sum().eval().reshape(Array2(1, 1)).broadcast(Array2(h, w));
    weight_grad_mat_t.device(place) =
D
dengkaipeng 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        out_grad_mat_t * (out_grad_mat_t.constant(1.0) - uv_t * weight_mat_t) /
        sigma_t;

    if (dim != 0) {
      std::vector<int> perm;
      for (int i = 0; i < rank; i++) {
        if (i < dim) {
          perm.push_back(i + 1);
        } else if (i == dim) {
          perm.push_back(0);
        } else {
          perm.push_back(i);
        }
      }
      weight_grad->mutable_data<T>(dims, ctx.GetPlace());
      TransCompute<DeviceContext, T>(
          rank, weight_grad_mat.Resize(framework::make_ddim(real_dims)),
          weight_grad, perm, dev_ctx);
    } else {
      TensorCopySync(weight_grad_mat.Resize(dims), ctx.GetPlace(), weight_grad);
    }
267
  }
D
dengkaipeng 已提交
268 269 270 271
};

}  // namespace operators
}  // namespace paddle