MultiBoxLossLayer.cpp 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MultiBoxLossLayer.h"
#include <float.h>
#include <vector>
#include "DataLayer.h"

namespace paddle {

REGISTER_LAYER(multibox_loss, MultiBoxLossLayer);

bool MultiBoxLossLayer::init(const LayerMap& layerMap,
                             const ParameterMap& parameterMap) {
  Layer::init(layerMap, parameterMap);

  auto layerConf = config_.inputs(0).multibox_loss_conf();
  numClasses_ = layerConf.num_classes();
  inputNum_ = layerConf.input_num();
  overlapThreshold_ = layerConf.overlap_threshold();
  negPosRatio_ = layerConf.neg_pos_ratio();
  negOverlap_ = layerConf.neg_overlap();
  backgroundId_ = layerConf.background_id();
  return true;
}

void MultiBoxLossLayer::forward(PassType passType) {
  Layer::forward(passType);
  size_t batchSize = getInputValue(*getLocInputLayer(0))->getHeight();
  resetOutput(batchSize, 1);

  // all location data and confidence score data
  locSizeSum_ = 0;
  confSizeSum_ = 0;
  for (size_t n = 0; n < inputNum_; ++n) {
    const MatrixPtr inLoc = getInputValue(*getLocInputLayer(n));
    const MatrixPtr inConf = getInputValue(*getConfInputLayer(n));
    locSizeSum_ += inLoc->getElementCnt();
    confSizeSum_ += inConf->getElementCnt();
  }

  // locBuffer layout:
  // | xmin1 | ymin1 | xmax1 | ymax1 | xmin2 ......
  Matrix::resizeOrCreate(locTmpBuffer_, 1, locSizeSum_, false, useGpu_);
  locBuffer_ = locTmpBuffer_;

  // confBuffer layout:
  // | class1 score | class2 score | ... |classN score | class1 score | ......
  Matrix::resizeOrCreate(confTmpBuffer_, 1, confSizeSum_, false, useGpu_);
  confBuffer_ = confTmpBuffer_;

  // concate location data and confidence score data
  size_t locOffset = 0;
  size_t confOffset = 0;
  auto& layerConf = config_.inputs(0).multibox_loss_conf();
  for (size_t n = 0; n < inputNum_; ++n) {
    const MatrixPtr inLoc = getInputValue(*getLocInputLayer(n));
    const MatrixPtr inConf = getInputValue(*getConfInputLayer(n));
    size_t height = getInput(*getLocInputLayer(n)).getFrameHeight();
    if (!height) height = layerConf.height();
    size_t width = getInput(*getLocInputLayer(n)).getFrameWidth();
    if (!width) width = layerConf.width();
    locOffset += appendWithPermute(*inLoc,
                                   height,
                                   width,
                                   locSizeSum_,
                                   locOffset,
                                   batchSize,
                                   *locBuffer_,
                                   kNCHWToNHWC);
    confOffset += appendWithPermute(*inConf,
                                    height,
                                    width,
                                    confSizeSum_,
                                    confOffset,
                                    batchSize,
                                    *confBuffer_,
                                    kNCHWToNHWC);
  }
  CHECK_EQ(locOffset, locSizeSum_ / batchSize);
  CHECK_EQ(confOffset, confSizeSum_ / batchSize);

  // priorValue layout:
  // | xmin1 | ymin1 | xmax1 | ymax1 | xmin1Var | ymin1Var | xmax1Var | ymax1Var
  // | xmin2 | ......
  MatrixPtr priorValue;

  // labelValue layout:
  // | class1_1 | xmin1_1 | ymin1_1 | xmax1_1 | ymax1_1 | difficult1_1 | ......
  MatrixPtr labelValue;

  // Copy data from GPU to CPU if use GPU
  if (useGpu_) {
    Matrix::resizeOrCreate(locCpuBuffer_, 1, locSizeSum_, false, false);
    Matrix::resizeOrCreate(confCpuBuffer_, 1, confSizeSum_, false, false);
    MatrixPtr priorTmpValue = getInputValue(*getPriorBoxLayer());
    Matrix::resizeOrCreate(
        priorCpuValue_, 1, priorTmpValue->getElementCnt(), false, false);
    MatrixPtr labelTmpValue = getInputValue(*getLabelLayer());
    Matrix::resizeOrCreate(labelCpuValue_,
                           labelTmpValue->getHeight(),
                           labelTmpValue->getWidth(),
                           false,
                           false);

    locCpuBuffer_->copyFrom(*locTmpBuffer_);
    confCpuBuffer_->copyFrom(*confTmpBuffer_);
    priorCpuValue_->copyFrom(*priorTmpValue);
    labelCpuValue_->copyFrom(*labelTmpValue);

    locBuffer_ = locCpuBuffer_;
    confBuffer_ = confCpuBuffer_;
    priorValue = priorCpuValue_;
    labelValue = labelCpuValue_;
  } else {
    priorValue = getInputValue(*getPriorBoxLayer());
    labelValue = getInputValue(*getLabelLayer());
  }

  // Get max scores for each prior bbox. Used in negative mining
132
  std::vector<std::vector<real>> allMaxConfScore;
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  numPriors_ = priorValue->getElementCnt() / 8;
  getMaxConfidenceScores(confBuffer_->getData(),
                         batchSize,
                         numPriors_,
                         numClasses_,
                         backgroundId_,
                         &allMaxConfScore);

  // Match prior bbox to groundtruth bbox
  Argument label = getInput(*getLabelLayer());
  const int* labelIndex = label.sequenceStartPositions->getData(false);
  size_t seqNum = label.getNumSequences();
  numMatches_ = 0;
  numNegs_ = 0;
  allMatchIndices_.clear();
  allNegIndices_.clear();

150 151 152 153 154 155 156 157 158 159 160 161
  std::pair<size_t, size_t> retPair = generateMatchIndices(*priorValue,
                                                           numPriors_,
                                                           *labelValue,
                                                           labelIndex,
                                                           seqNum,
                                                           allMaxConfScore,
                                                           batchSize,
                                                           overlapThreshold_,
                                                           negOverlap_,
                                                           negPosRatio_,
                                                           &allMatchIndices_,
                                                           &allNegIndices_);
162 163 164 165 166 167 168 169 170 171 172 173
  numMatches_ = retPair.first;
  numNegs_ = retPair.second;

  // BBox location L1 smooth loss
  locLoss_ = 0.0;
  if (numMatches_ >= 1) {
    size_t count = 0;
    MatrixPtr locLossOutput;
    Matrix::resizeOrCreate(locLossOutput, numMatches_ * 4, 1, false, false);
    Matrix::resizeOrCreate(locGTData_, numMatches_ * 4, 1, false, false);
    Matrix::resizeOrCreate(locDiff_, numMatches_ * 4, 1, false, false);
    locDiff_->zeroMem();
174
    std::vector<real> locGTData;
175

176 177
    real* locDiffData = locDiff_->getData();
    const real* locBufferData = locBuffer_->getData();
178 179 180 181 182
    for (size_t n = 0; n < batchSize; ++n) {
      for (size_t i = 0; i < numPriors_; ++i) {
        if (allMatchIndices_[n][i] == -1) continue;  // match none
        size_t locOffset =
            n * (locBuffer_->getElementCnt() / batchSize) + i * 4;
183 184 185 186
        std::copy(locBufferData + locOffset,
                  locBufferData + locOffset + 4,
                  locDiffData + count);
        count += 4;
187 188
        const int gtIdx = allMatchIndices_[n][i];
        size_t priorOffset = i * 8;
189
        std::vector<NormalizedBBox> priorBBoxVec;
190 191
        getBBoxFromPriorData(
            priorValue->getData() + priorOffset, 1, priorBBoxVec);
192
        std::vector<std::vector<real>> priorBBoxVar;
193 194 195
        getBBoxVarFromPriorData(
            priorValue->getData() + priorOffset, 1, priorBBoxVar);
        size_t labelOffset = (labelIndex[n] + gtIdx) * 6;
196
        std::vector<NormalizedBBox> gtBBoxVec;
197
        getBBoxFromLabelData(labelValue->getData() + labelOffset, 1, gtBBoxVec);
198
        std::vector<real> gtEncode;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        encodeBBoxWithVar(
            priorBBoxVec[0], priorBBoxVar[0], gtBBoxVec[0], gtEncode);
        locGTData.insert(locGTData.end(), gtEncode.begin(), gtEncode.end());
      }
    }
    locGTData_->copyFrom(&locGTData[0], numMatches_ * 4);
    locLossOutput->smoothL1(*locDiff_, *locGTData_, 0.0);
    locLoss_ = locLossOutput->getSum() / numMatches_;
  }

  // BBox confidence softmax loss
  confLoss_ = 0;
  numConf_ = numMatches_ + numNegs_;
  if (numConf_ >= 1) {
    Matrix::resizeOrCreate(confProb_, numConf_, numClasses_, false, false);
    IVector::resizeOrCreate(confGTData_, numConf_, false);
    confProb_->zeroMem();
    size_t count = 0;

218 219 220
    std::vector<real> confPredData;
    real* confProbData = confProb_->getData();
    const real* confBufferData = confBuffer_->getData();
221 222 223 224 225 226 227
    for (size_t n = 0; n < batchSize; ++n) {
      for (size_t i = 0; i < numPriors_; ++i) {
        if (allMatchIndices_[n][i] == -1) continue;
        size_t labelOffset = (labelIndex[n] + allMatchIndices_[n][i]) * 6;
        const int gtLabel = (labelValue->getData() + labelOffset)[0];
        confGTData_->getData()[count] = gtLabel;
        size_t confOffset = n * numPriors_ * numClasses_ + i * numClasses_;
228 229 230 231 232 233 234
        std::copy(confBufferData + confOffset,
                  confBufferData + confOffset + numClasses_,
                  confProbData + count * numClasses_);
        confPredData.reserve(confPredData.size() + numClasses_);
        confPredData.insert(confPredData.end(),
                            confBufferData + confOffset,
                            confBufferData + confOffset + numClasses_);
235 236 237 238 239 240 241
        ++count;
      }
      // Negative mining samples
      for (size_t i = 0; i < allNegIndices_[n].size(); ++i) {
        confGTData_->getData()[count] = backgroundId_;
        size_t confOffset =
            n * numPriors_ * numClasses_ + allNegIndices_[n][i] * numClasses_;
242 243 244 245 246 247 248 249
        std::copy(confBufferData + confOffset,
                  confBufferData + confOffset + numClasses_,
                  confProbData + count * numClasses_);
        confPredData.reserve(confPredData.size() + numClasses_);
        confPredData.insert(confPredData.end(),
                            confBufferData + confOffset,
                            confBufferData + confOffset + numClasses_);
        ++count;
250 251
      }
    }
252
    CHECK_EQ(numConf_, count);
253 254 255 256 257 258 259 260
    confProb_->softmax(*confProb_);
    MatrixPtr confLossOutput;
    Matrix::resizeOrCreate(confLossOutput, numConf_, 1, false, false);
    confLossOutput->oneHotCrossEntropy(*confProb_, *confGTData_);
    confLoss_ = confLossOutput->getSum() / numMatches_;
  }
  real loss = locLoss_ + confLoss_;
  MatrixPtr outV = getOutputValue();
Y
yangyaming 已提交
261
  outV->assign(loss);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
}

void MultiBoxLossLayer::backward(const UpdateCallback& callback) {
  size_t batchSize = getInputValue(*getLocInputLayer(0))->getHeight();
  locBuffer_->zeroMem();
  confBuffer_->zeroMem();

  // Back propagate on location prediction
  if (numMatches_ >= 1) {
    MatrixPtr locDiffBuffer;
    Matrix::resizeOrCreate(locDiffBuffer, numMatches_ * 4, 1, false, false);
    locDiffBuffer->smoothL1Bp(*locDiff_, *locGTData_, 0.0);
    locDiff_->copyFrom(*locDiffBuffer);
    // scale gradient
    for (size_t i = 0; i < numMatches_ * 4; ++i)
      locDiff_->getData()[i] *= (1. / numMatches_);
    // Copy gradient back
    size_t count = 0;
280 281
    const real* locDiffData = locDiff_->getData();
    for (size_t n = 0; n < batchSize; ++n) {
282 283
      for (size_t i = 0; i < numPriors_; ++i) {
        if (allMatchIndices_[n][i] == -1) continue;
284 285 286 287 288
        real* locBufferData =
            locBuffer_->getData() + n * numPriors_ * 4 + i * 4;
        std::copy(locDiffData + count * 4,
                  locDiffData + (count + 1) * 4,
                  locBufferData);
289 290
        ++count;
      }
291
    }
292 293 294 295 296 297 298 299 300
    CHECK_EQ(count, numMatches_);
  }

  if (numConf_ >= 1) {
    for (size_t i = 0; i < numConf_; ++i)
      confProb_->getData()[i * numClasses_ + confGTData_->getData()[i]] -= 1;
    for (size_t i = 0; i < numConf_ * numClasses_; ++i)
      confProb_->getData()[i] *= (1. / numMatches_);
    size_t count = 0;
301
    const real* confProbData = confProb_->getData();
302 303 304 305 306
    for (size_t n = 0; n < batchSize; ++n) {
      for (size_t i = 0; i < numPriors_; ++i) {
        if (allMatchIndices_[n][i] == -1) continue;
        real* confDiffData = confBuffer_->getData() +
                             n * numPriors_ * numClasses_ + i * numClasses_;
307 308 309
        std::copy(confProbData + count * numClasses_,
                  confProbData + (count + 1) * numClasses_,
                  confDiffData);
310 311 312 313 314 315
        ++count;
      }
      for (size_t i = 0; i < allNegIndices_[n].size(); ++i) {
        int idx = allNegIndices_[n][i];
        real* confDiffData = confBuffer_->getData() +
                             n * numPriors_ * numClasses_ + idx * numClasses_;
316 317 318
        std::copy(confProbData + count * numClasses_,
                  confProbData + (count + 1) * numClasses_,
                  confDiffData);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        ++count;
      }
    }
    CHECK_EQ(count, numConf_);
  }
  if (useGpu_) {
    locTmpBuffer_->copyFrom(*locCpuBuffer_);
    confTmpBuffer_->copyFrom(*confCpuBuffer_);
    locBuffer_ = locTmpBuffer_;
    confBuffer_ = confTmpBuffer_;
  }
  // copy back
  size_t locOffset = 0;
  size_t confOffset = 0;
  auto layerConf = config_.inputs(0).multibox_loss_conf();
  for (size_t n = 0; n < inputNum_; ++n) {
    const MatrixPtr inLocG = getInputGrad(*getLocInputLayer(n));
    const MatrixPtr inConfG = getInputGrad(*getConfInputLayer(n));
    size_t height = getInput(*getLocInputLayer(n)).getFrameHeight();
Y
yangyaming 已提交
338 339 340
    // only for unittest, there are no width and height information
    // when constructing matrix in unittest, so we should
    // set the shape in configuration
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    if (!height) height = layerConf.height();
    size_t width = getInput(*getLocInputLayer(n)).getFrameWidth();
    if (!width) width = layerConf.width();

    // NHWC to NCHW
    MatrixPtr locGBuffer;
    Matrix::resizeOrCreate(
        locGBuffer, inLocG->getHeight(), inLocG->getWidth(), false, useGpu_);
    MatrixPtr confGBuffer;
    Matrix::resizeOrCreate(
        confGBuffer, inConfG->getHeight(), inConfG->getWidth(), false, useGpu_);

    locOffset += decomposeWithPermute(*locBuffer_,
                                      height,
                                      width,
                                      locSizeSum_,
                                      locOffset,
                                      batchSize,
                                      *locGBuffer,
                                      kNHWCToNCHW);
    inLocG->add(*locGBuffer);
    confOffset += decomposeWithPermute(*confBuffer_,
                                       height,
                                       width,
                                       confSizeSum_,
                                       confOffset,
                                       batchSize,
                                       *confGBuffer,
                                       kNHWCToNCHW);
    inConfG->add(*confGBuffer);
  }
  CHECK_EQ(locOffset, locSizeSum_ / batchSize);
  CHECK_EQ(confOffset, confSizeSum_ / batchSize);
}

}  // namespace paddle