graph_pattern_detector.cc 108.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
16
#include "paddle/fluid/framework/ir/graph_traits.h"
17
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
C
chengduo 已提交
18
#include "paddle/fluid/framework/operator.h"
19
#include "paddle/fluid/platform/enforce.h"
Y
Yan Chunwei 已提交
20
#include "paddle/fluid/string/pretty_log.h"
21

22 23 24 25
namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
26 27 28
using string::PrettyLog;
using string::Style;

29 30
size_t PDPattern::id_ = 0UL;

C
chengduo 已提交
31
PDNode *PDPattern::NewNode(const std::string &name) {
Y
Yan Chunwei 已提交
32
  if (!name.empty()) {
33 34 35 36
    PADDLE_ENFORCE_EQ(
        node_map_.count(name), 0UL,
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
Y
Yan Chunwei 已提交
37 38 39
  }

  nodes_.emplace_back(new PDNode(this, name));
C
chengduo 已提交
40
  auto *cur = nodes_.back().get();
Y
Yan Chunwei 已提交
41 42 43 44
  node_map_[name] = cur;
  return cur;
}

C
chengduo 已提交
45
PDNode *PDPattern::NewNode(PDNode::teller_t &&teller, const std::string &name) {
46
  if (!name.empty()) {
47 48 49 50
    PADDLE_ENFORCE_EQ(
        node_map_.count(name), 0UL,
        platform::errors::PreconditionNotMet(
            "PDNode's name should be unique, get duplicate [%s]", name));
51 52
  }

53
  nodes_.emplace_back(new PDNode(std::move(teller), this, name));
C
chengduo 已提交
54
  auto *cur = nodes_.back().get();
55
  node_map_[name] = cur;
56 57 58
  return cur;
}

C
chengduo 已提交
59
PDNode *PDPattern::RetrieveNode(const std::string &id) const {
60 61 62 63 64 65 66 67
  auto it = node_map_.find(id);
  if (it == node_map_.end()) {
    return nullptr;
  }

  return it->second;
}

C
chengduo 已提交
68
void PDPattern::AddEdge(PDNode *a, PDNode *b) {
69 70 71 72
  PADDLE_ENFORCE_NOT_NULL(
      a, platform::errors::NotFound("PDNode %s is not found.", a->name()));
  PADDLE_ENFORCE_NOT_NULL(
      b, platform::errors::NotFound("PDNode %s is not found.", b->name()));
73 74
  PADDLE_ENFORCE_NE(a, b, platform::errors::PermissionDenied(
                              "Cannot connect the same node in the graph."));
75 76 77
  edges_.emplace_back(a, b);
}

C
chengduo 已提交
78
void GraphPatternDetector::operator()(Graph *graph,
79
                                      GraphPatternDetector::handle_t handler) {
80 81 82 83
  if (!MarkPDNodesInGraph(*graph)) {
    return;
  }

84 85
  auto subgraphs = DetectPatterns();
  UniquePatterns(&subgraphs);
Z
Zhang Ting 已提交
86
  SortSubgraphs(&subgraphs);
87
  RemoveOverlappedMatch(&subgraphs);
Y
Yan Chunwei 已提交
88
  ValidateByNodeRole(&subgraphs);
89

Y
Yan Chunwei 已提交
90
  if (subgraphs.empty()) return;
91
  LOG(INFO) << "---  detected " << subgraphs.size() << " subgraphs";
92
  int id = 0;
C
chengduo 已提交
93
  for (auto &g : subgraphs) {
M
minqiyang 已提交
94
    VLOG(3) << "optimizing #" << id++ << " subgraph";
95 96 97 98
    handler(g, graph);
  }
}

C
chengduo 已提交
99
bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph &graph) {
M
minqiyang 已提交
100
  VLOG(3) << "mark pdnodes in graph";
101 102
  if (graph.Nodes().empty()) return false;

C
chengduo 已提交
103 104
  for (auto &node : GraphTraits::DFS(graph)) {
    for (const auto &pdnode : pattern_.nodes()) {
105
      if (pdnode->Tell(&node)) {
106
        VLOG(4) << "Node " << node.Name() << " marked as " << pdnode->name();
107 108 109 110
        pdnodes2nodes_[pdnode.get()].insert(&node);
      }
    }
  }
Y
Yan Chunwei 已提交
111
  // Check to early stop if some PDNode can't find matched Node.
C
chengduo 已提交
112
  for (auto &pdnode : pattern_.nodes()) {
Y
Yan Chunwei 已提交
113
    if (!pdnodes2nodes_.count(pdnode.get())) {
M
minqiyang 已提交
114
      VLOG(4) << pdnode->name() << " can't find matched Node, early stop";
Y
Yan Chunwei 已提交
115
      // return false;
Y
Yan Chunwei 已提交
116 117
    }
  }
M
minqiyang 已提交
118
  VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
119

120 121 122
  return !pdnodes2nodes_.empty();
}

Y
Yan Chunwei 已提交
123
// The intermediate Nodes can only link to the nodes inside the pattern, or this
T
tianshuo78520a 已提交
124
// subgraph will be dropped.
Y
Yan Chunwei 已提交
125
void GraphPatternDetector::ValidateByNodeRole(
C
chengduo 已提交
126
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
Y
Yan Chunwei 已提交
127 128 129 130 131
  std::vector<GraphPatternDetector::subgraph_t> result;

  subgraphs->erase(
      std::remove_if(
          subgraphs->begin(), subgraphs->end(),
C
chengduo 已提交
132
          [](const GraphPatternDetector::subgraph_t &subgraph) -> bool {
Y
Yan Chunwei 已提交
133
            // Collect the inputs and outputs.
134
            std::set<Node *> ios;
C
chengduo 已提交
135
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
136 137 138 139
              if (!item.first->IsIntermediate()) {
                ios.insert(item.second);
              }
            }
C
chengduo 已提交
140
            for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
141
              if (item.first->IsIntermediate()) {
C
chengduo 已提交
142
                for (auto *x : item.second->inputs) {
Y
Yan Chunwei 已提交
143 144 145 146
                  if (!ios.count(x)) {
                    return true;
                  }
                }
C
chengduo 已提交
147
                for (auto *x : item.second->outputs) {
Y
Yan Chunwei 已提交
148 149 150 151 152 153 154 155 156 157 158
                  if (!ios.count(x)) {
                    return true;
                  }
                }
              }
            }
            return false;
          }),
      subgraphs->end());
}

159
struct HitGroup {
160
  std::map<PDNode *, Node *> roles;
161

C
chengduo 已提交
162
  bool Match(Node *node, PDNode *pat) {
163
    if (nodes_.count(node)) {
T
Tao Luo 已提交
164 165 166 167 168
      if (roles.count(pat) && roles[pat] == node) return true;
      return false;
    } else {
      if (roles.count(pat) && roles[pat] != node) return false;
      return true;
169
    }
170 171
  }

C
chengduo 已提交
172
  void Register(Node *node, PDNode *pat) {
173 174 175 176 177
    roles[pat] = node;
    nodes_.insert(node);
  }

 private:
178
  std::set<Node *> nodes_;
179 180 181
};

// Tell whether Node a links to b.
C
chengduo 已提交
182 183
bool IsNodesLink(Node *a, Node *b) {
  for (auto *node : a->outputs) {
184 185 186 187 188 189 190
    if (b == node) {
      return true;
    }
  }
  return false;
}

191 192
std::vector<GraphPatternDetector::subgraph_t>
GraphPatternDetector::DetectPatterns() {
193
  // Init empty subgraphs.
194
  std::vector<GraphPatternDetector::subgraph_t> result;
195
  std::vector<HitGroup> init_groups;
196
  std::array<std::vector<HitGroup>, 2> bi_records;
C
chengduo 已提交
197
  auto *first_pnode = pattern_.edges().empty() ? pattern().nodes().front().get()
198
                                               : pattern_.edges().front().first;
199
  if (!pdnodes2nodes_.count(first_pnode)) return result;
C
chengduo 已提交
200
  for (auto *node : pdnodes2nodes_[first_pnode]) {
201 202 203 204 205 206 207 208 209 210
    HitGroup group;
    group.roles[first_pnode] = node;
    init_groups.emplace_back(group);
  }

  int step = 0;
  bi_records[0] = std::move(init_groups);

  // Extend a PDNode to subgraphs by deducing the connection relations defined
  // in edges of PDNodes.
C
chengduo 已提交
211
  for (const auto &edge : pattern_.edges()) {
M
minqiyang 已提交
212
    VLOG(4) << "check " << edge.first->name() << " -> " << edge.second->name();
Y
Yan Chunwei 已提交
213
    // TODO(Superjomn) Fix bug here, the groups might be duplicate here.
214 215
    // Each role has two PDNodes, which indicates two roles.
    // Detect two Nodes that can match these two roles and they are connected.
C
chengduo 已提交
216 217
    auto &pre_groups = bi_records[step % 2];
    auto &cur_groups = bi_records[1 - (step++ % 2)];
218
    cur_groups.clear();
219
    if (pre_groups.empty()) break;
220
    // source -> target
C
chengduo 已提交
221 222
    for (Node *source : pdnodes2nodes_[edge.first]) {
      for (Node *target : pdnodes2nodes_[edge.second]) {
M
minqiyang 已提交
223
        VLOG(8) << "check " << source->id() << " -- " << target->id();
224
        // TODO(Superjomn) add some prune strategies.
C
chengduo 已提交
225
        for (const auto &group : pre_groups) {
T
Tao Luo 已提交
226 227 228 229 230 231
          if (IsNodesLink(source, target)) {
            HitGroup new_group = group;
            bool flag = new_group.Match(source, edge.first) &&
                        new_group.Match(target, edge.second);
            if (flag) {
              new_group.Register(source, edge.first);
232 233 234 235 236 237 238 239
              new_group.Register(target, edge.second);
              cur_groups.push_back(new_group);
              // TODO(Superjomn) need to unique
            }
          }
        }
      }
    }
M
minqiyang 已提交
240
    VLOG(3) << "step " << step << " get records: " << cur_groups.size();
C
chengduo 已提交
241 242
    for (auto &group : cur_groups) {
      for (auto &item : group.roles) {
M
minqiyang 已提交
243
        VLOG(4) << "node " << item.second->id() << " as " << item.first->name();
Y
Yan Chunwei 已提交
244
      }
M
minqiyang 已提交
245
      VLOG(4) << "=========================================================";
Y
Yan Chunwei 已提交
246
    }
247 248
  }

C
chengduo 已提交
249
  for (auto &group : bi_records[step % 2]) {
250
    GraphPatternDetector::subgraph_t subgraph;
C
chengduo 已提交
251
    for (auto &role : group.roles) {
252 253 254 255 256 257 258
      subgraph.emplace(role.first, role.second);
    }
    result.emplace_back(subgraph);
  }
  return result;
}

Y
Yan Chunwei 已提交
259 260
struct GraphItemLessThan {
  bool operator()(const std::pair<PDNode *, Node *> &a,
Y
Yan Chunwei 已提交
261
                  const std::pair<PDNode *, Node *> &b) {
Y
Yan Chunwei 已提交
262 263 264 265 266
    if (a.first != b.first) {
      return a.first < b.first;
    } else {
      return a.second < b.second;
    }
Y
Yan Chunwei 已提交
267
  }
Y
Yan Chunwei 已提交
268
};
Y
Yan Chunwei 已提交
269

270 271
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
272
void GraphPatternDetector::UniquePatterns(
C
chengduo 已提交
273
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
274
  if (subgraphs->empty()) return;
275
  std::vector<GraphPatternDetector::subgraph_t> result;
276

277
  std::set<size_t> set;
Y
Yan Chunwei 已提交
278
  std::hash<std::string> hasher;
C
chengduo 已提交
279
  for (auto &g : *subgraphs) {
Y
Yan Chunwei 已提交
280 281
    // Sort the items in the sub-graph, and transform to a string key.
    std::vector<std::pair<PDNode *, Node *>> sorted_keys(g.begin(), g.end());
Y
Yan Chunwei 已提交
282
    std::sort(sorted_keys.begin(), sorted_keys.end(), GraphItemLessThan());
Y
Yan Chunwei 已提交
283 284 285
    std::stringstream ss;
    for (auto &item : sorted_keys) {
      ss << item.first << ":" << item.second;
286
    }
Y
Yan Chunwei 已提交
287
    auto key = hasher(ss.str());
288 289 290 291 292 293 294 295
    if (!set.count(key)) {
      result.emplace_back(g);
      set.insert(key);
    }
  }
  *subgraphs = result;
}

Z
Zhang Ting 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
void GraphPatternDetector::SortSubgraphs(
    std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
  if (subgraphs->empty()) return;
  bool has_bn_add_act = false;
  for (auto &subgraph : *subgraphs) {
    for (auto &item : subgraph) {
      if (item.first->name().find("bn_add_act") != std::string::npos) {
        has_bn_add_act = true;
        break;
      }
    }
  }
  if (!has_bn_add_act) {
    return;
  }

  std::sort(
      subgraphs->begin(), subgraphs->end(),
      [](const GraphPatternDetector::subgraph_t &a,
         const GraphPatternDetector::subgraph_t &b) {
        for (auto &item : a) {
          if (item.first->name().find("bn_add_act") != std::string::npos &&
              item.first->name().find("bn_reserve_space") !=
                  std::string::npos) {
            auto it_b = b.find(item.first);
            if (it_b != b.end()) {
              if (item.second->Name() != it_b->second->Name()) {
                return item.second->Name() < it_b->second->Name();
              } else {
                return false;
              }
            } else {
              return false;
            }
          }
        }
        return false;
      });
}

336
void GraphPatternDetector::RemoveOverlappedMatch(
C
chengduo 已提交
337
    std::vector<subgraph_t> *subgraphs) {
338
  std::vector<subgraph_t> result;
339
  std::set<Node *> node_set;
340

C
chengduo 已提交
341
  for (const auto &subgraph : *subgraphs) {
342
    bool valid = true;
C
chengduo 已提交
343
    for (auto &item : subgraph) {
Y
Yan Chunwei 已提交
344
      if (item.first->IsIntermediate() && node_set.count(item.second)) {
345 346 347 348 349
        valid = false;
        break;
      }
    }
    if (valid) {
C
chengduo 已提交
350
      for (auto &item : subgraph) {
351 352 353 354 355 356 357 358
        node_set.insert(item.second);
      }
      result.push_back(subgraph);
    }
  }
  *subgraphs = result;
}

359 360 361 362 363
std::string PDPattern::DotString() const {
  using inference::analysis::Dot;
  Dot dot;
  int id = 0;
  // Create Nodes
C
chengduo 已提交
364 365
  std::unordered_map<PDNode *, std::string> node2dot;
  for (const auto &node : nodes()) {
366 367 368 369 370
    std::string node_id = "Node" + std::to_string(id++);
    dot.AddNode(node_id, {}, node->name());
    node2dot[node.get()] = node_id;
  }
  // Create Edges
C
chengduo 已提交
371
  for (const auto &edge : edges()) {
372 373 374 375
    if (!node2dot.count(edge.first) || !node2dot.count(edge.second)) {
      LOG(ERROR) << "no node " << edge.first << " " << edge.second;
      continue;
    }
C
chengduo 已提交
376 377
    auto &src = node2dot.at(edge.first);
    auto &trg = node2dot.at(edge.second);
378 379 380 381 382
    dot.AddEdge(src, trg, {});
  }
  return dot.Build();
}

C
chengduo 已提交
383
PDNode &PDNode::LinksTo(const std::vector<PDNode *> &others) {
384
  // extend outlinks.
C
chengduo 已提交
385
  for (PDNode *x : others) {
386 387 388 389 390
    pattern_->AddEdge(this, x);
  }
  return *this;
}

C
chengduo 已提交
391
PDNode &PDNode::LinksFrom(const std::vector<PDNode *> &others) {
392
  // extend outlinks.
C
chengduo 已提交
393
  for (PDNode *x : others) {
394 395 396 397 398
    pattern_->AddEdge(x, this);
  }
  return *this;
}

C
chengduo 已提交
399 400
PDNode *PDNode::assert_is_op() {
  asserts_.emplace_back([](Node *x) { return x && x->IsOp(); });
Y
Yan Chunwei 已提交
401 402
  return this;
}
C
chengduo 已提交
403 404 405

PDNode *PDNode::assert_is_op(const std::string &op_type) {
  asserts_.emplace_back([op_type](Node *x) {
Y
Yan Chunwei 已提交
406 407 408 409
    return x && x->IsOp() && x->Op()->Type() == op_type;
  });
  return this;
}
C
chengduo 已提交
410 411 412 413 414 415

PDNode *PDNode::assert_is_var() {
  asserts_.emplace_back([](Node *x) { return x && x->IsVar(); });
  return this;
}

Z
Zhen Wang 已提交
416 417 418 419 420 421 422
PDNode *PDNode::assert_var_dtype(proto::VarType::Type dtype) {
  assert_is_var();
  asserts_.emplace_back(
      [dtype](Node *x) { return x->Var()->GetDataType() == dtype; });
  return this;
}

C
chengduo 已提交
423 424
PDNode *PDNode::assert_is_not_ctrl_var() {
  asserts_.emplace_back([](Node *x) { return x && !x->IsCtrlVar(); });
Y
Yan Chunwei 已提交
425 426
  return this;
}
C
chengduo 已提交
427 428

PDNode *PDNode::assert_var_not_persistable() {
Y
Yan Chunwei 已提交
429
  assert_is_var();
C
chengduo 已提交
430
  asserts_.emplace_back([](Node *x) { return !x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
431 432
  return this;
}
C
chengduo 已提交
433 434

PDNode *PDNode::assert_is_persistable_var() {
Y
Yan Chunwei 已提交
435
  assert_is_var();
C
chengduo 已提交
436
  asserts_.emplace_back([=](Node *x) { return x->Var()->Persistable(); });
Y
Yan Chunwei 已提交
437 438
  return this;
}
C
chengduo 已提交
439 440 441

PDNode *PDNode::assert_is_op_nth_input(const std::string &op_type,
                                       const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
442 443
  assert_is_var();
  assert_is_op_input(op_type);
C
chengduo 已提交
444 445
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
446 447 448
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthInput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
449 450 451 452 453
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
454 455 456

PDNode *PDNode::assert_is_op_nth_output(const std::string &op_type,
                                        const std::string &argument, int nth) {
Y
Yan Chunwei 已提交
457
  assert_is_var();
C
chengduo 已提交
458 459
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
460 461 462
      if (op->IsOp() && op->Op()->Type() == op_type &&
          IsNthOutput(x, op, argument, nth))
        return true;
Y
Yan Chunwei 已提交
463 464 465 466 467
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
468 469

PDNode *PDNode::assert_is_only_input_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
470
  assert_is_var();
C
chengduo 已提交
471 472
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
473 474 475 476 477 478 479 480 481
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->inputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
482 483

PDNode *PDNode::assert_is_only_output_of_op(const std::string &op_type) {
Y
Yan Chunwei 已提交
484
  assert_is_var();
C
chengduo 已提交
485 486
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
487 488 489 490 491 492 493 494 495
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type &&
          op->outputs.size() == 1) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
496 497

PDNode *PDNode::assert_is_op_output(const std::string &op_type) {
Y
Yan Chunwei 已提交
498
  assert_is_var();
C
chengduo 已提交
499 500
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
Y
Yan Chunwei 已提交
501 502 503 504 505 506 507 508
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
509 510 511

PDNode *PDNode::assert_is_op_output(const std::string &op_type,
                                    const std::string &argument) {
512 513 514 515
  assert_is_var();
  assert_is_op_nth_output(op_type, argument, 0);
  return this;
}
Z
Zhen Wang 已提交
516

C
chengduo 已提交
517
PDNode *PDNode::assert_is_op_input(const std::string &op_type) {
Y
Yan Chunwei 已提交
518
  assert_is_var();
C
chengduo 已提交
519 520
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
Y
Yan Chunwei 已提交
521 522 523 524 525 526 527 528
      if (op && op->IsOp() && op->Op() && op->Op()->Type() == op_type) {
        return true;
      }
    }
    return false;
  });
  return this;
}
C
chengduo 已提交
529

Z
Zhen Wang 已提交
530 531 532 533 534 535 536 537 538 539
PDNode *PDNode::assert_is_not_op_input(const std::string &argument) {
  assert_is_op();
  asserts_.emplace_back([=](Node *x) {
    auto &ins = x->Op()->Inputs();
    auto iter = ins.find(argument);
    return iter == ins.end() || iter->second.empty();
  });
  return this;
}

C
chengduo 已提交
540 541
PDNode *PDNode::assert_is_op_input(const std::string &op_type,
                                   const std::string &argument) {
542 543 544 545
  assert_is_var();
  assert_is_op_nth_input(op_type, argument, 0);
  return this;
}
C
chengduo 已提交
546 547

PDNode *PDNode::assert_op_has_n_inputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
548
  assert_is_op(op_type);
C
chengduo 已提交
549
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
Y
Yan Chunwei 已提交
550 551
  return this;
}
C
chengduo 已提交
552 553

PDNode *PDNode::assert_op_has_n_outputs(const std::string &op_type, size_t n) {
Y
Yan Chunwei 已提交
554
  assert_is_op(op_type);
C
chengduo 已提交
555
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
Y
Yan Chunwei 已提交
556 557
  return this;
}
C
chengduo 已提交
558

559 560 561 562 563 564 565 566 567 568
PDNode *PDNode::assert_has_n_inputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->inputs.size() == n; });
  return this;
}

PDNode *PDNode::assert_has_n_outputs(size_t n) {
  asserts_.emplace_back([=](Node *x) { return x->outputs.size() == n; });
  return this;
}

C
chengduo 已提交
569
PDNode *PDNode::assert_more(PDNode::teller_t &&teller) {
Y
Yan Chunwei 已提交
570 571 572 573
  asserts_.emplace_back(std::move(teller));
  return this;
}

C
chengduo 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
PDNode *PDNode::assert_is_ops(const std::unordered_set<std::string> &op_types) {
  asserts_.emplace_back([op_types](Node *x) {
    return x && x->IsOp() && op_types.count(x->Op()->Type());
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  assert_is_ops_input(op_types);
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthInput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_nth_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument, int nth) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op->IsOp() && op_types.count(op->Op()->Type()) &&
          IsNthOutput(x, op, argument, nth))
        return true;
    }
    return false;
  });
  return this;
}
PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->inputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_output(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_output(op_types, argument, 0);
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types) {
  assert_is_var();
  asserts_.emplace_back([=](Node *x) {
    for (auto *op : x->outputs) {
      if (op && op->IsOp() && op->Op() && op_types.count(op->Op()->Type())) {
        return true;
      }
    }
    return false;
  });
  return this;
}

PDNode *PDNode::assert_is_ops_input(
    const std::unordered_set<std::string> &op_types,
    const std::string &argument) {
  assert_is_var();
  assert_is_ops_nth_input(op_types, argument, 0);
  return this;
}

bool VarLinksToOp(Node *node, const std::string &op_type) {
  for (auto *out : node->outputs) {
657 658 659 660 661 662
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}
C
chengduo 已提交
663 664

bool IsNthInput(Node *var, Node *op, const std::string &argument, size_t nth) {
665 666 667 668 669 670 671 672
  PADDLE_ENFORCE_EQ(
      var->IsVar(), true,
      platform::errors::InvalidArgument(
          "First parameter of function IsNthInput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthInput must be Node::Op"));
673 674
  if (!HasInput(op, argument) || op->Op()->Input(argument).size() <= nth)
    return false;
675 676
  return var->Name() == op->Op()->Input(argument)[nth];
}
C
chengduo 已提交
677

678
bool HasInput(Node *op, const std::string &argument) {
679 680 681 682
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "First parameter of function HasInput must be Node::Op"));
683 684 685 686 687 688
  auto const &names = op->Op()->InputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

689 690 691 692 693 694 695 696 697 698 699
bool HasOutput(Node *op, const std::string &argument) {
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "First parameter of function HasOuput must be Node::Op"));
  auto const &names = op->Op()->OutputNames();
  if (std::find(names.begin(), names.end(), argument) == names.end())
    return false;
  return true;
}

C
chengduo 已提交
700
bool IsNthOutput(Node *var, Node *op, const std::string &argument, size_t nth) {
701 702 703 704 705 706 707 708
  PADDLE_ENFORCE_EQ(
      var->IsVar(), true,
      platform::errors::InvalidArgument(
          "First parameter of function IsNthOutput must be Node::Var"));
  PADDLE_ENFORCE_EQ(
      op->IsOp(), true,
      platform::errors::InvalidArgument(
          "Second parameter of function IsNthOutput must be Node::Op"));
709 710
  if (!HasOutput(op, argument) || op->Op()->Output(argument).size() <= nth)
    return false;
711 712
  return var->Name() == op->Op()->Output(argument)[nth];
}
C
chengduo 已提交
713 714 715 716 717

void GraphSafeRemoveNodes(Graph *graph,
                          const std::unordered_set<const Node *> &nodes) {
  for (auto *node : nodes) {
    graph->RemoveNode(const_cast<Node *>(node));
718 719
  }

C
chengduo 已提交
720
  for (auto *node : graph->Nodes()) {
721 722
    for (auto it = node->inputs.begin(); it != node->inputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
723
        it = const_cast<Node *>(node)->inputs.erase(it);
724
      } else {
725
        it++;
726
      }
727 728 729
    }
    for (auto it = node->outputs.begin(); it != node->outputs.end();) {
      if (nodes.count(*it)) {
C
chengduo 已提交
730
        it = const_cast<Node *>(node)->outputs.erase(it);
731
      } else {
732
        it++;
733
      }
734 735 736
    }
  }
}
C
chengduo 已提交
737 738 739

bool VarLinksFromOp(Node *node, const std::string &op_type) {
  for (auto *out : node->inputs) {
740 741 742 743 744 745 746
    if (out->IsOp() && out->Op()->Type() == op_type) {
      return true;
    }
  }
  return false;
}

S
Sylwester Fraczek 已提交
747
PDNode *patterns::ConvBN::operator()(paddle::framework::ir::PDNode *conv_input,
748
                                     const std::string &conv_type,
S
Sylwester Fraczek 已提交
749 750
                                     bool with_eltwise_add) {
  // Create Operators
751 752
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
S
Sylwester Fraczek 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }
  auto *batch_norm_op =
      pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
766
                              ->assert_is_op_input(conv_type, "Filter");
S
Sylwester Fraczek 已提交
767 768 769

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
770
                           ->assert_is_only_output_of_op(conv_type);
S
Sylwester Fraczek 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as BN input
    conv_out_var->assert_is_op_input("batch_norm", "X");
  }

  // BN Scale
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
793 794
                           ->assert_is_op_input("batch_norm", "Scale")
                           ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
795 796 797 798
  // BN Bias
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
799 800
                          ->assert_is_op_input("batch_norm", "Bias")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
801 802 803 804
  // BN Mean
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
805 806
                          ->assert_is_op_input("batch_norm", "Mean")
                          ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
807 808 809 810
  // BN Variance
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
811 812
                              ->assert_is_op_input("batch_norm", "Variance")
                              ->assert_has_n_outputs(1);
S
Sylwester Fraczek 已提交
813 814 815 816

  // BN output
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->AsOutput()
817
                         ->assert_is_op_output("batch_norm", "Y");
S
Sylwester Fraczek 已提交
818 819 820

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->AsOutput()
821 822
                              ->assert_is_op_output("batch_norm", "MeanOut")
                              ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
823 824 825 826

  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->AsOutput()
827 828
          ->assert_is_op_output("batch_norm", "VarianceOut")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
829

830 831 832 833
  auto *bn_saved_mean_var = pattern->NewNode(bn_saved_mean_repr())
                                ->AsOutput()
                                ->assert_is_op_output("batch_norm", "SavedMean")
                                ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
834 835 836 837

  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->AsOutput()
838 839
          ->assert_is_op_output("batch_norm", "SavedVariance")
          ->assert_has_n_outputs(0);
S
Sylwester Fraczek 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    batch_norm_op
        ->LinksFrom({eltwise_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  } else {
    batch_norm_op
        ->LinksFrom({conv_out_var, bn_scale_var, bn_bias_var, bn_mean_var,
                     bn_variance_var})
        .LinksTo({bn_out_var, bn_mean_out_var, bn_variance_out_var,
                  bn_saved_mean_var, bn_saved_variance_var});
  }
  return bn_out_var;
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
PDNode *patterns::ConvActivation::operator()(
    paddle::framework::ir::PDNode *conv_input, std::string conv_type,
    std::string activation_type) {
  // Create Operators
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
  auto *activation_op =
      pattern->NewNode(activation_repr())->assert_is_op(activation_type);
  // Create variables
  // Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input(conv_type, "Filter");
  // intermediate variable, will be removed in the IR after fuse.
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op(conv_type)
                           ->assert_is_op_input(activation_type);
  // output
  auto *activation_out_var = pattern->NewNode(activation_out_repr())
                                 ->AsOutput()
                                 ->assert_is_op_output(activation_type);

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  activation_op->LinksFrom({conv_out_var}).LinksTo({activation_out_var});
  return activation_out_var;
}

T
tensor-tang 已提交
890 891 892 893
PDNode *patterns::SeqConvEltAddRelu::operator()(
    paddle::framework::ir::PDNode *seqconv_input) {
  // Create Operators
  seqconv_input->assert_is_op_input("sequence_conv", "X");
T
tensor-tang 已提交
894 895 896 897
  auto *seqconv_op = pattern->NewNode(seqconv_repr())
                         ->assert_is_op("sequence_conv")
                         ->assert_op_attr<bool>("paddingTrainable", false)
                         ->assert_op_attr<int>("contextStride", 1);
T
tensor-tang 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934

  auto *eltadd_op =
      pattern->NewNode(eltadd_repr())->assert_is_op("elementwise_add");
  auto *relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
  // Create variables
  // Filter
  auto *seqconv_weight_var =
      pattern->NewNode(seqconv_weight_repr())
          ->AsInput()
          ->assert_is_persistable_var()
          ->assert_is_op_input("sequence_conv", "Filter");
  // Bias
  auto *eltadd_bias_var = pattern->NewNode(eltadd_bias_repr())
                              ->AsInput()
                              ->assert_is_op_input("elementwise_add");
  // intermediate variable, will be removed in the IR after fuse.
  auto *seqconv_out_var = pattern->NewNode(seqconv_out_repr())
                              ->AsIntermediate()
                              ->assert_is_only_output_of_op("sequence_conv")
                              ->assert_is_op_input("elementwise_add");
  auto *eltadd_out_var = pattern->NewNode(eltadd_out_repr())
                             ->AsIntermediate()
                             ->assert_is_only_output_of_op("elementwise_add")
                             ->assert_is_only_input_of_op("relu");
  // output
  auto *relu_out_var = pattern->NewNode(relu_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("relu");

  seqconv_op->LinksFrom({seqconv_input, seqconv_weight_var})
      .LinksTo({seqconv_out_var});
  eltadd_op->LinksFrom({seqconv_out_var, eltadd_bias_var})
      .LinksTo({eltadd_out_var});
  relu_op->LinksFrom({eltadd_out_var}).LinksTo({relu_out_var});
  return relu_out_var;
}

C
chengduo 已提交
935
PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
936
                                 bool with_bias, bool with_relu) {
Y
Yan Chunwei 已提交
937 938
  // Create shared nodes.
  x->assert_is_op_input("mul", "X");
C
chengduo 已提交
939
  auto *mul = pattern->NewNode(mul_repr())->assert_is_op("mul");
Y
Yan Chunwei 已提交
940

C
chengduo 已提交
941
  auto *mul_w_var = pattern->NewNode(w_repr())
Y
Yan Chunwei 已提交
942 943 944 945
                        ->AsInput()
                        ->assert_is_persistable_var()
                        ->assert_is_op_input("mul", "Y");

C
chengduo 已提交
946
  auto *mul_out_var =
Y
Yan Chunwei 已提交
947 948
      pattern->NewNode(mul_out_repr())->assert_is_op_output("mul");

949 950
  // Add links.
  mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var});
Y
Yan Chunwei 已提交
951 952 953 954 955
  if (!with_bias) {  // not with bias
    return mul_out_var;
  } else {  // with bias
    mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");
    // Create operators.
C
chengduo 已提交
956
    auto *elementwise_add = pattern->NewNode(elementwise_add_repr())
Y
Yan Chunwei 已提交
957 958
                                ->assert_is_op("elementwise_add");
    // Create variables.
C
chengduo 已提交
959
    auto *bias = pattern->NewNode(bias_repr())
Y
Yan Chunwei 已提交
960
                     ->assert_is_op_input("elementwise_add")
961
                     ->assert_is_persistable_var()
Y
Yan Chunwei 已提交
962 963
                     ->AsInput();

964 965 966 967
    auto *elementwise_add_out_var =
        pattern->NewNode(elementwise_add_out_repr())
            ->AsOutput()
            ->assert_is_op_output("elementwise_add");
Y
Yan Chunwei 已提交
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    elementwise_add->LinksFrom({mul_out_var, bias})
        .LinksTo({elementwise_add_out_var});
    if (!with_relu) {
      return elementwise_add_out_var;
    } else {
      elementwise_add_out_var->AsIntermediate()->assert_is_op_input("relu");
      // Create operators.
      auto *relu = pattern->NewNode(relu_repr())->assert_is_op("relu");
      auto *relu_out_var = pattern->NewNode(relu_out_repr())
                               ->AsOutput()
                               ->assert_is_op_output("relu");

      relu->LinksFrom({elementwise_add_out_var}).LinksTo({relu_out_var});
      return relu_out_var;
    }
984 985
  }
}
T
tensor-tang 已提交
986

987 988 989 990 991 992 993
PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x,
                                       bool with_bias) {
  // Create shared nodes.
  x->assert_is_op_input("fc", "Input");

  auto *fc_op = pattern->NewNode(fc_repr())->assert_is_op("fc");
  // Create variables
M
Michał Gallus 已提交
994 995 996 997
  // Input
  auto *input_var = pattern->NewNode(input_repr())
                        ->AsInput()
                        ->assert_is_op_input("fc", "Input");
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
  // Filter
  auto *fc_weight_var = pattern->NewNode(weights_repr())
                            ->AsInput()
                            ->assert_is_op_input("fc", "W");
  // Bias
  auto *fc_bias_var = pattern->NewNode(bias_repr())
                          ->AsInput()
                          ->assert_is_op_input("fc", "Bias");
  // Output
  auto *fc_out_var = pattern->NewNode(output_repr())
                         ->AsOutput()
                         ->assert_is_op_output("fc", "Out")
                         ->assert_is_only_output_of_op("fc");

M
Michał Gallus 已提交
1012 1013
  fc_op->LinksFrom({input_var, fc_weight_var, fc_bias_var})
      .LinksTo({fc_out_var});
1014 1015 1016
  return fc_out_var;
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
PDNode *patterns::FCActOneDNN::operator()(const std::string &act_type) {
  auto *fc = pattern->NewNode(fc_repr())->assert_is_op("fc");
  auto *fc_out = pattern->NewNode(fc_out_repr())
                     ->assert_is_op_output("fc", "Out")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  fc->LinksTo({fc_out});
  act->LinksFrom({fc_out}).LinksTo({act_out});

  return act_out;
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
PDNode *patterns::Embedding::operator()(PDNode *x) {
  x->assert_is_op_input("lookup_table", "Ids");
  auto *lookup_table_op =
      pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__)                    \
  auto *arg__ = pattern->NewNode(arg__##_repr()) \
                    ->assert_is_op_##io__("lookup_table", #arg__);

  NEW_NODE(W, input);

  NEW_NODE(Out, output);
#undef NEW_NODE

  lookup_table_op->LinksFrom({x, W});
  lookup_table_op->LinksTo({Out});
  return Out;
}

C
chengduo 已提交
1052
PDNode *patterns::LSTM::operator()(PDNode *x) {
1053
  x->assert_is_op_input("lstm", "Input");
C
chengduo 已提交
1054
  auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");
Y
Yan Chunwei 已提交
1055
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1056
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1057
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__);
1058 1059 1060 1061 1062

  // Currently, the H0 and C0 are optional
  // TODO(Superjomn) upgrade the fuse framework to support optional.
  // NEW_NODE(H0, input);
  // NEW_NODE(C0, input);
Y
Yan Chunwei 已提交
1063 1064
  NEW_NODE(Weight, input);
  NEW_NODE(Bias, input);
1065

Y
Yan Chunwei 已提交
1066 1067 1068 1069 1070
  NEW_NODE(Hidden, output);
  NEW_NODE(Cell, output);
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchCellPreAct, output);
#undef NEW_NODE
1071 1072 1073 1074 1075

  lstm_op->LinksFrom({x, Weight, Bias});
  lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct});
  return Hidden;
}
T
tensor-tang 已提交
1076

C
chengduo 已提交
1077
PDNode *patterns::GRU::operator()(PDNode *x) {
T
tensor-tang 已提交
1078
  x->assert_is_op_input("gru", "Input");
C
chengduo 已提交
1079
  auto *gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru");
Y
Yan Chunwei 已提交
1080
#define NEW_NODE(arg__, io__) \
C
chengduo 已提交
1081
  auto *arg__ =               \
Y
Yan Chunwei 已提交
1082
      pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__);
T
tensor-tang 已提交
1083

Y
Yan Chunwei 已提交
1084
  NEW_NODE(Weight, input);
T
tensor-tang 已提交
1085 1086
  // TODO(Superjomn): upgrade the fuse framework to support optional.
  // H0 and bias are optional
Y
Yan Chunwei 已提交
1087
  NEW_NODE(Bias, input);  // also optional
T
tensor-tang 已提交
1088 1089
  // NEW_NODE(H0, input);

Y
Yan Chunwei 已提交
1090
  NEW_NODE(Hidden, output);
T
tensor-tang 已提交
1091
  // below are intermediate
Y
Yan Chunwei 已提交
1092 1093 1094 1095
  NEW_NODE(BatchGate, output);
  NEW_NODE(BatchResetHiddenPrev, output);
  NEW_NODE(BatchHidden, output);
#undef NEW_NODE
T
tensor-tang 已提交
1096

T
tensor-tang 已提交
1097 1098 1099 1100
  BatchGate->AsIntermediate();
  BatchResetHiddenPrev->AsIntermediate();
  BatchHidden->AsIntermediate();

T
tensor-tang 已提交
1101 1102 1103 1104 1105
  gru_op->LinksFrom({x, Weight, Bias});
  gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden});
  return Hidden;
}

C
chengduo 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
PDNode *patterns::ActElewiseAdd::operator()(
    paddle::framework::ir::PDNode *in_var,
    std::unordered_set<std::string> act_types) {
  in_var->assert_is_ops_input(act_types, "X");

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);
  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_not_ctrl_var()
                          ->assert_is_ops_output(act_types);
  act_out_var->AsIntermediate()->assert_is_op_input("elementwise_add");

  auto *ele_x_var = pattern->NewNode(ele_x_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add")
                        ->AsInput();
  auto *elementwise_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_out = pattern->NewNode(elewise_add_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add", "Out");

  act->LinksFrom({in_var}).LinksTo({act_out_var});
  elementwise_add->LinksFrom({act_out_var, ele_x_var})
      .LinksTo({elewise_add_out});

  return elewise_add_out;
}

Z
Zhen Wang 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
PDNode *patterns::BatchNormAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");
  auto *bn_variance_var = pattern->NewNode(bn_variance_repr())
                              ->assert_is_op_input("batch_norm", "Variance");
  auto *bn_mean_var = pattern->NewNode(bn_mean_repr())
                          ->assert_is_op_input("batch_norm", "Mean");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_has_n_outputs(1);

  bn_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom(
        {bn_x_var, bn_scale_var, bn_bias_var, bn_variance_var, bn_mean_var})
      .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
                bn_saved_mean_var, bn_reserve_space, bn_out_var});
  act->LinksFrom({bn_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);
  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");
  // ReserveSpace as the output is equal to:
  // data_layout == 'NHWC' && FLAGS_cudnn_batchnorm_spatial_persistent == true
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"));
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  bn_grad
      ->LinksFrom({bn_x_var, d_intermediate_var, bn_scale_var, bn_bias_var,
                   bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
PDNode *patterns::BatchNormActOneDNN::operator()(const std::string &act_type) {
  auto *bn_x = pattern->NewNode(bn_in_repr())
                   ->AsInput()
                   ->assert_is_op_input("batch_norm", "X");
  auto *bn = pattern->NewNode(batch_norm_repr())->assert_is_op("batch_norm");
  auto *bn_out = pattern->NewNode(bn_out_repr())
                     ->assert_is_op_output("batch_norm", "Y")
                     ->assert_is_op_input(act_type);
  auto *act =
      pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
  auto *act_out = pattern->NewNode(act_out_repr())
                      ->assert_is_op_output(act_type, "Out")
                      ->AsOutput();

  bn->LinksFrom({bn_x}).LinksTo({bn_out});
  act->LinksFrom({bn_out}).LinksTo({act_out});

  return act_out;
}

Z
Zhang Ting 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
PDNode *patterns::BatchNormAddAct::operator()(
    paddle::framework::ir::PDNode *bn_x_var,
    std::unordered_set<std::string> act_types) {
  bn_x_var->assert_is_op_input("batch_norm", "X")
      ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm", "Bias");

  auto *bn = pattern->NewNode(batch_norm_repr())
                 ->assert_is_op("batch_norm")
                 ->assert_is_not_op_input("MomentumTensor")
                 ->assert_op_attr<bool>("is_test", false)
                 ->assert_op_attr<bool>("use_global_stats", false)
                 ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *bn_mean_out_var = pattern->NewNode(bn_mean_out_repr())
                              ->assert_is_op_output("batch_norm", "MeanOut");
  auto *bn_variance_out_var =
      pattern->NewNode(bn_variance_out_repr())
          ->assert_is_op_output("batch_norm", "VarianceOut");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_output("batch_norm", "SavedVariance");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_output("batch_norm", "SavedMean");
  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_output("batch_norm", "ReserveSpace");
  auto *bn_out_var = pattern->NewNode(bn_out_repr())
                         ->assert_is_op_output("batch_norm", "Y")
                         ->assert_var_dtype(proto::VarType::FP16);

  bn_out_var->assert_is_op_input("elementwise_add");

  auto *elewise_add =
      pattern->NewNode(elewise_add_repr())->assert_is_op("elementwise_add");

  auto *elewise_add_in_var = pattern->NewNode(elewise_add_in_repr())
                                 ->assert_is_not_ctrl_var()
                                 ->assert_is_op_input("elementwise_add")
                                 ->assert_var_dtype(proto::VarType::FP16);

  auto *elewise_add_out_var =
      pattern->NewNode(elewise_add_out_repr())
          ->assert_is_op_output("elementwise_add", "Out")
          ->assert_has_n_outputs(1);

  elewise_add_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  bn->LinksFrom({bn_x_var, bn_scale_var, bn_bias_var})
      .LinksTo({bn_mean_out_var, bn_variance_out_var, bn_saved_variance_var,
                bn_saved_mean_var, bn_reserve_space, bn_out_var});
  elewise_add->LinksFrom({elewise_add_in_var, bn_out_var})
      .LinksTo({elewise_add_out_var});
  act->LinksFrom({elewise_add_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::BatchNormAddActGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_grad_types) {
  auto *act_grad =
      pattern->NewNode(act_grad_repr())->assert_is_ops(act_grad_types);
  auto *elewise_add_grad = pattern->NewNode(elewise_add_grad_repr())
                               ->assert_is_op("elementwise_add_grad");
  auto *bn_grad = pattern->NewNode(batch_norm_grad_repr())
                      ->assert_is_op("batch_norm_grad")
                      ->assert_op_attr<bool>("use_global_stats", false)
                      ->assert_op_attr<std::string>("data_layout", "NHWC");

  auto *act_out_var = pattern->NewNode(act_out_repr())
                          ->assert_is_ops_input(act_grad_types, "Out");
  auto *d_act_x_var =
      pattern->NewNode(d_act_x_repr())
          ->assert_is_ops_output(act_grad_types, GradVarName("X"))
          ->assert_has_n_outputs(1);  // d_act_x

  d_act_x_var->AsIntermediate()->assert_is_op_input("elementwise_add_grad");

  auto *d_elewise_add_in_var =
      pattern->NewNode(d_elewise_add_in_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_1
  auto *d_bn_out_var =
      pattern->NewNode(d_bn_out_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad")
          ->assert_var_dtype(proto::VarType::FP16);  // d_add_in_2

  d_bn_out_var->assert_is_op_input("batch_norm_grad", GradVarName("Y"));

  auto *bn_x_var = pattern->NewNode(bn_x_repr())
                       ->assert_is_op_input("batch_norm_grad", "X")
                       ->assert_var_dtype(proto::VarType::FP16);
  auto *bn_scale_var = pattern->NewNode(bn_scale_repr())
                           ->assert_is_op_input("batch_norm_grad", "Scale");
  auto *bn_bias_var = pattern->NewNode(bn_bias_repr())
                          ->assert_is_op_input("batch_norm_grad", "Bias");
  auto *bn_saved_mean_var =
      pattern->NewNode(bn_saved_mean_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedMean");
  auto *bn_saved_variance_var =
      pattern->NewNode(bn_saved_variance_repr())
          ->assert_is_op_input("batch_norm_grad", "SavedVariance");

  auto *bn_reserve_space =
      pattern->NewNode(bn_reserve_space_repr())
          ->assert_is_op_input("batch_norm_grad", "ReserveSpace");
  auto *d_bn_x_var =
      pattern->NewNode(d_bn_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("X"))
          ->assert_var_dtype(proto::VarType::FP16);
  auto *d_bn_scale_var =
      pattern->NewNode(d_bn_scale_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Scale"));
  auto *d_bn_bias_var =
      pattern->NewNode(d_bn_bias_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("batch_norm_grad", GradVarName("Bias"));

  act_grad->LinksFrom({d_act_out_var, act_out_var}).LinksTo({d_act_x_var});

  elewise_add_grad->LinksFrom({d_act_x_var})
      .LinksTo({d_elewise_add_in_var, d_bn_out_var});

  bn_grad
      ->LinksFrom({bn_x_var, d_bn_out_var, bn_scale_var, bn_bias_var,
                   bn_saved_mean_var, bn_saved_variance_var, bn_reserve_space})
      .LinksTo({d_bn_x_var, d_bn_scale_var, d_bn_bias_var});

  return bn_grad;
}

C
chengduo 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
PDNode *patterns::ElewiseAddAct::operator()(
    paddle::framework::ir::PDNode *ele_x_var,
    std::unordered_set<std::string> act_types) {
  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_op_input("elementwise_add", "Y");

  auto *ele_add =
      pattern->NewNode(ele_add_repr())->assert_is_op("elementwise_add");

  auto *ele_out_var = pattern->NewNode(elewise_add_out_repr())
                          ->assert_is_op_output("elementwise_add", "Out");

  ele_out_var->AsIntermediate()->assert_is_ops_input(act_types);

  auto *act = pattern->NewNode(act_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_output(act_types, "Out");

  ele_add->LinksFrom({ele_x_var, ele_y_var}).LinksTo({ele_out_var});
  act->LinksFrom({ele_out_var}).LinksTo({act_out_var});

  return act_out_var;
}

PDNode *patterns::ElewiseAddActInplaceGrad::operator()(
    paddle::framework::ir::PDNode *d_act_out_var,
    std::unordered_set<std::string> act_types) {
  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  auto *act_grad = pattern->NewNode(act_grad_repr())->assert_is_ops(act_types);

  auto *act_out_var =
      pattern->NewNode(act_out_repr())->assert_is_ops_input(act_types, "Out");

  auto *d_intermediate_var =
      pattern->NewNode(d_itermediate_out_repr())
          ->assert_is_ops_output(act_types, GradVarName("X"));

  act_grad->LinksFrom({d_act_out_var, act_out_var})
      .LinksTo({d_intermediate_var});

  auto *ele_y_var = pattern->NewNode(ele_y_repr())
                        ->assert_is_not_ctrl_var()
                        ->assert_is_op_input("elementwise_add_grad", "Y");

  auto *ele_add_grad = pattern->NewNode(ele_add_grad_repr())
                           ->assert_is_op("elementwise_add_grad");

  auto *d_ele_x_var =
      pattern->NewNode(d_ele_x_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("X"));

  auto *d_ele_y_var =
      pattern->NewNode(d_ele_y_repr())
          ->assert_is_not_ctrl_var()
          ->assert_is_op_output("elementwise_add_grad", GradVarName("Y"));

  ele_add_grad->LinksFrom({d_intermediate_var, ele_y_var})
      .LinksTo({d_ele_x_var, d_ele_y_var});

  return ele_add_grad;
}

1476
// conv_type: conv2d, conv3d, conv2d_transpose
M
Michal Gallus 已提交
1477
PDNode *patterns::ConvBias::operator()(
1478
    paddle::framework::ir::PDNode *conv_input, std::string conv_type) {
M
Michal Gallus 已提交
1479
  // Create Operators
1480 1481
  conv_input->assert_is_op_input(conv_type, "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op(conv_type);
M
Michal Gallus 已提交
1482 1483 1484 1485
  auto *eltiwse_op =
      pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  // Create variables
  // Filter
Y
Yihua Xu 已提交
1486 1487 1488
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
1489
                              ->assert_is_op_input(conv_type, "Filter");
M
Michal Gallus 已提交
1490
  // intermediate variable, will be removed in the IR after fuse.
Y
Yihua Xu 已提交
1491 1492
  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
1493
                           ->assert_is_only_output_of_op(conv_type)
Y
Yihua Xu 已提交
1494
                           ->assert_is_op_input("elementwise_add");
M
Michal Gallus 已提交
1495 1496 1497
  // Bias stored in elementwise_add
  auto *eltwise_bias_var = pattern->NewNode(eltwise_bias_repr())
                               ->AsInput()
M
Michal Gallus 已提交
1498
                               ->assert_is_persistable_var()
M
Michal Gallus 已提交
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
                               ->assert_is_op_input("elementwise_add", "Y");
  // output
  auto *eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                              ->AsOutput()
                              ->assert_is_op_output("elementwise_add");
  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});
  eltiwse_op->LinksFrom({conv_out_var, eltwise_bias_var})
      .LinksTo({eltwise_out_var});
  return eltwise_out_var;
}

1510 1511 1512 1513
PDNode *patterns::Conv::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

  auto input_var = pattern->NewNode(conv_input_repr())
1514
                       ->AsInput()
1515 1516 1517
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
1518
                        ->AsInput()
1519 1520 1521
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
1522
                        ->AsOutput()
1523 1524
                        ->assert_is_op_output("conv2d", "Output");

1525 1526 1527 1528
  conv_op->LinksFrom({input_var, filter_var}).LinksTo({output_var});
  return output_var;
}

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
PDNode *patterns::Transpose::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_in = pattern->NewNode(transpose_in_repr())
                          ->AsInput()
                          ->assert_is_op_input("transpose2");
  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsOutput()
                           ->assert_is_op_output("transpose2", "Out");

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  prev_op->LinksTo({transpose_in});
  transpose_op->LinksFrom({transpose_in}).LinksTo({transpose_out});
  next_op->LinksFrom({transpose_out});
  return transpose_out;
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
PDNode *patterns::Reshape::operator()() {
  auto prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();

  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");
  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2", "Out");

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  prev_op->LinksTo({reshape_in});
  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  next_op->LinksFrom({reshape_out});
  return reshape_out;
}

1571
PDNode *patterns::Matmul::operator()() {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::Squeeze2Matmul::operator()() {
  auto squeeze2_in_x = pattern->NewNode(squeeze2_in_x_repr())
                           ->assert_is_op_input("squeeze2", "X")
                           ->AsInput();
  auto squeeze2_op =
      pattern->NewNode(squeeze2_op_repr())->assert_is_op("squeeze2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("squeeze2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  squeeze2_op->LinksFrom({squeeze2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::Reshape2Matmul::operator()() {
  auto reshape2_in_x = pattern->NewNode(reshape2_in_x_repr())
                           ->assert_is_op_input("reshape2", "X")
                           ->AsInput();
  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("reshape2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  reshape2_op->LinksFrom({reshape2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

PDNode *patterns::MatmulWithInputOps::operator()() {
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
  auto prev_op_x = pattern->NewNode(prev_op_x_repr())->assert_is_op();
  auto prev_op_y = pattern->NewNode(prev_op_y_repr())->assert_is_op();

  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y = pattern->NewNode(matmul_in_y_repr())
                         ->AsInput()
                         ->assert_is_op_input("matmul", "Y");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  prev_op_x->LinksTo({matmul_in_x});
  prev_op_y->LinksTo({matmul_in_y});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
PDNode *patterns::Flatten2Matmul::operator()() {
  auto flatten2_in_x = pattern->NewNode(flatten2_in_x_repr())
                           ->assert_is_op_input("flatten2", "X")
                           ->AsInput();
  auto flatten2_op =
      pattern->NewNode(flatten2_op_repr())->assert_is_op("flatten2");
  auto matmul_in_x = pattern->NewNode(matmul_in_x_repr())
                         ->assert_is_op_output("flatten2", "Out")
                         ->assert_is_op_input("matmul", "X");
  auto matmul_in_y =
      pattern->NewNode(matmul_in_y_repr())->assert_is_op_input("matmul", "Y");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");
  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  flatten2_op->LinksFrom({flatten2_in_x}).LinksTo({matmul_in_x});
  matmul_op->LinksFrom({matmul_in_x, matmul_in_y}).LinksTo({matmul_out});
  return matmul_out;
}

1672 1673 1674
PDNode *patterns::ConvResidual::operator()(bool with_residual_data) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");

1675 1676 1677 1678 1679 1680 1681 1682 1683
  if (!with_residual_data) {
    conv_op->assert_more([&](Node *x) {
      auto node_names = x->Op()->InputNames();
      if (!HasInput(x, "ResidualData") ||
          x->Op()->Input("ResidualData").size() == 0)
        return true;
      return false;
    });
  }
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

  auto input_var = pattern->NewNode(conv_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("conv2d", "Input");

  auto filter_var = pattern->NewNode(conv_filter_repr())
                        ->AsInput()
                        ->assert_is_op_input("conv2d", "Filter");

  auto output_var = pattern->NewNode(conv_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("conv2d", "Output");

  std::vector<PDNode *> links_from{input_var, filter_var};

  if (with_residual_data) {
    auto res_conn_var = pattern->NewNode(conv_residual_data_repr())
                            ->AsInput()
                            ->assert_is_op_input("conv2d", "ResidualData");
    links_from.push_back(res_conn_var);
  }

  conv_op->LinksFrom(links_from).LinksTo({output_var});
  return output_var;
}

PDNode *patterns::Pool::operator()() {
  auto pool_op = pattern->NewNode(pool_op_repr())->assert_is_op("pool2d");

  auto input_var = pattern->NewNode(pool_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("pool2d", "X");

  auto output_var = pattern->NewNode(pool_output_repr())
                        ->AsOutput()
                        ->assert_is_op_output("pool2d", "Out");
1720

1721
  pool_op->LinksFrom({input_var}).LinksTo({output_var});
1722 1723 1724
  return output_var;
}

1725
PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
1726 1727 1728
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");

1729 1730
  x_var->AsInput()->assert_is_op_input("elementwise_add", "X");
  y_var->AsInput()->assert_is_op_input("elementwise_add", "Y");
1731 1732 1733 1734
  auto out_var = pattern->NewNode(elementwise_add_out_repr())
                     ->AsOutput()
                     ->assert_is_op_output("elementwise_add", "Out");

1735
  elementwise_add_op->LinksFrom({x_var, y_var});
1736 1737 1738 1739
  elementwise_add_op->LinksTo({out_var});

  return out_var;
}
1740

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
PDNode *patterns::Concat::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");

  auto output_var = pattern->NewNode(concat_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("concat", "Out");

  concat_op->LinksTo({output_var});
  return output_var;
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
PDNode *patterns::ConcatReLU::operator()() {
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto concat_out =
      pattern->NewNode(concat_out_repr())->assert_is_op_output("concat", "Out");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  concat_op->LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

PDNode *patterns::ConvConcatReLU::operator()() {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto concat_op = pattern->NewNode(concat_op_repr())->assert_is_op("concat");
  auto relu_op = pattern->NewNode(relu_op_repr())->assert_is_op("relu");

  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d", "Output");

  auto concat_out = pattern->NewNode(concat_out_repr())
                        ->assert_is_op_output("concat", "Out")
                        ->assert_is_op_input("relu", "X");

  auto relu_out = pattern->NewNode(relu_out_repr())
                      ->AsOutput()
                      ->assert_is_op_output("relu", "Out");

  conv_op->LinksTo({conv_out});
  concat_op->LinksFrom({conv_out}).LinksTo({concat_out});
  relu_op->LinksFrom({concat_out}).LinksTo({relu_out});

  return relu_out;
}

J
joanna.wozna.intel 已提交
1792 1793 1794 1795 1796 1797 1798 1799
PDNode *patterns::OpRequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return node->Op()->HasAttr("Scale_out") ? true : false;
                    });
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
1800 1801 1802 1803 1804 1805
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");

J
joanna.wozna.intel 已提交
1806 1807
  any_op->LinksTo({requant_in});
  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
1808 1809 1810
  return requant_out;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
PDNode *patterns::RequantOp::operator()() {
  auto requant_in = pattern->NewNode(requant_in_repr())
                        ->assert_is_op_input("requantize", "Input");
  auto requant_op =
      pattern->NewNode(requant_op_repr())->assert_is_op("requantize");
  auto requant_out = pattern->NewNode(requant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("requantize", "Output");
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      return (node->Op()->HasAttr("Scale_in") ||
                              node->Op()->HasAttr("Scale_x") ||
                              node->Op()->HasAttr("Scale_y"));
                    });

  requant_op->LinksFrom({requant_in}).LinksTo({requant_out});
  any_op->LinksFrom({requant_out});
  return any_op;
}

1832 1833 1834 1835
PDNode *patterns::OpDequant::operator()() {
  auto any_op = pattern->NewNode(any_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
1836 1837
                      return (node->Op()->HasAttr("force_fp32_output") ||
                              node->Op()->HasProtoAttr("force_fp32_output"));
1838 1839 1840
                    });
  auto dequant_in = pattern->NewNode(dequant_in_repr())
                        ->assert_is_op_input("dequantize", "Input");
1841 1842 1843 1844 1845 1846
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");

1847 1848
  any_op->LinksTo({dequant_in});
  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
1849 1850 1851
  return dequant_out;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
PDNode *patterns::DequantScale::operator()() {
  // Create Operators
  auto dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto dequant_out = pattern->NewNode(dequant_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("dequantize", "Output");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");

  dequant_op->LinksTo({dequant_out});
  scale_op->LinksFrom({dequant_out}).LinksTo({scale_out});

  return scale_out;
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
PDNode *patterns::ScaleQuant::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");

  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  scale_op->LinksFrom({scale_in}).LinksTo({quant_in});
  quant_op->LinksFrom({quant_in});

  return quant_op;
}

PDNode *patterns::QuantConv::operator()() {
  auto quant_in = pattern->NewNode(quant_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("quantize", "Input");
  auto quant_op = pattern->NewNode(quant_op_repr())->assert_is_op("quantize");

  auto conv_in = pattern->NewNode(conv_in_repr())
                     ->AsInput()
                     ->assert_is_op_input("conv2d", "Input");
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  conv_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  quant_op->LinksFrom({quant_in}).LinksTo({conv_in});
  conv_op->LinksFrom({conv_in});

  return quant_op;
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
PDNode *patterns::ScaleMatmul::operator()() {
  auto scale_in = pattern->NewNode(scale_in_repr())
                      ->AsInput()
                      ->assert_is_op_input("scale", "X");
  auto scale_op = pattern->NewNode(scale_op_repr())->assert_is_op("scale");
  auto scale_out = pattern->NewNode(scale_out_repr())
                       ->AsOutput()
                       ->assert_is_op_output("scale", "Out");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  scale_op->LinksFrom({scale_in}).LinksTo({scale_out});
  matmul_op->LinksFrom({scale_out});
  return matmul_op;
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
PDNode *patterns::PriorBox::operator()() {
  auto prior_box_op =
      pattern->NewNode(prior_box_op_repr())->assert_is_op("prior_box");

  auto input_var = pattern->NewNode(prior_box_input_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Input");

  auto image_var = pattern->NewNode(prior_box_image_repr())
                       ->AsInput()
                       ->assert_is_op_input("prior_box", "Image");

  auto boxes_var = pattern->NewNode(prior_box_boxes_repr())
                       ->AsOutput()
                       ->assert_is_op_output("prior_box", "Boxes");

  auto variances_var = pattern->NewNode(prior_box_variances_repr())
                           ->AsOutput()
                           ->assert_is_op_output("prior_box", "Variances");

  prior_box_op->LinksFrom({input_var, image_var})
      .LinksTo({boxes_var, variances_var});
  return boxes_var;
}

H
hjchen2 已提交
1949
std::unordered_set<std::string> conv_act_set({"identity", "relu"});
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
1964
                                  ->assert_is_persistable_var()
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });

  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
  act_op->LinksFrom({elementwise_add_out}).LinksTo({act_out});

  return act_out;
}

PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2012
                                  ->assert_is_persistable_var()
2013 2014 2015 2016
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
H
hjchen2 已提交
2017
                                 ->assert_is_op_input("elementwise_add", "Y")
2018 2019 2020 2021 2022
                                 ->AsIntermediate();

  auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
                                  ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
H
hjchen2 已提交
2023
                                    ->assert_is_op_input("elementwise_add", "X")
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
                                    ->AsInput();
  auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
                                   ->assert_is_op_output("elementwise_add")
                                   ->AsIntermediate();

  auto act_op = pattern->NewNode(act_op_repr())
                    ->assert_is_op()
                    ->assert_more([&](Node *node) {
                      auto op_type = node->Name();
                      return conv_act_set.count(op_type);
                    });
  auto act_out = pattern->NewNode(act_out_repr())
                     ->assert_is_var()
                     // is activation op's output.
                     ->assert_more([&](Node *node) {
                       for (auto *in_op : node->inputs) {
                         if (conv_act_set.count(in_op->Name())) {
                           return true;
                         }
                       }
                       return false;
                     })
                     ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});
H
hjchen2 已提交
2051 2052
  elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
      .LinksTo({elementwise_add_out_1});
2053 2054 2055 2056
  act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
  return act_out;
}

N
nhzlx 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
PDNode *patterns::ConvElementwiseadd::operator()(PDNode *conv_in) {
  conv_in->AsInput();
  auto conv_op = pattern->NewNode(conv_op_repr())->assert_is_op("conv2d");
  auto conv_out = pattern->NewNode(conv_out_repr())
                      ->assert_is_op_output("conv2d")
                      ->assert_is_op_input("elementwise_add", "X")
                      ->AsIntermediate();
  auto conv_filter = pattern->NewNode(conv_filter_repr())
                         ->assert_is_op_input("conv2d", "Filter")
                         ->AsInput();
  auto elementwise_add_op = pattern->NewNode(elementwise_add_op_repr())
                                ->assert_is_op("elementwise_add");
  auto elementwise_add_in_y = pattern->NewNode(elementwise_add_in_y_repr())
2070
                                  ->assert_is_persistable_var()
N
nhzlx 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
                                  ->assert_is_op_input("elementwise_add", "Y")
                                  ->AsInput();
  auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
                                 ->assert_is_op_output("elementwise_add")
                                 ->AsOutput();

  conv_op->LinksFrom({conv_in, conv_filter});
  conv_out->LinksFrom({conv_op});
  elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
      .LinksTo({elementwise_add_out});

  return elementwise_add_out;
}

N
nhzlx 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
PDNode *patterns::ConvAffineChannel::operator()(
    paddle::framework::ir::PDNode *conv_input, bool with_eltwise_add) {
  // Create Operators
  conv_input->assert_is_op_input("conv2d", "Input");
  auto *conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");

  PDNode *eltwise_op = nullptr;
  if (with_eltwise_add) {
    eltwise_op =
        pattern->NewNode(eltwise_repr())->assert_is_op("elementwise_add");
  }

  auto *affine_channel_op =
      pattern->NewNode(affine_channel_repr())->assert_is_op("affine_channel");
  // Create variables
  // Conv Filter
  auto *conv_weight_var = pattern->NewNode(conv_weight_repr())
                              ->AsInput()
                              ->assert_is_persistable_var()
                              ->assert_is_op_input("conv2d", "Filter");

  auto *conv_out_var = pattern->NewNode(conv_out_repr())
                           ->AsIntermediate()
                           ->assert_is_only_output_of_op("conv2d");

  PDNode *eltwise_y_in_var = nullptr;
  PDNode *eltwise_out_var = nullptr;
  if (with_eltwise_add) {
    // Conv output as Bias input
    conv_out_var->assert_is_op_input("elementwise_add", "X");
    // Bias
    eltwise_y_in_var = pattern->NewNode(eltwise_y_in_repr())
                           ->assert_is_op_input("elementwise_add", "Y")
                           ->AsInput();
    eltwise_out_var = pattern->NewNode(eltwise_out_repr())
                          ->AsIntermediate()
                          ->assert_is_only_output_of_op("elementwise_add");
  } else {
    // Conv output as AffineChannel input
    conv_out_var->assert_is_op_input("affine_channel", "X");
  }

  // AC Scale
  auto *ac_scale_var = pattern->NewNode(ac_scale_repr())
                           ->AsInput()
                           ->assert_is_persistable_var()
2131
                           ->assert_has_n_outputs(1)
N
nhzlx 已提交
2132 2133 2134 2135 2136
                           ->assert_is_op_input("affine_channel", "Scale");
  // AC Bias
  auto *ac_bias_var = pattern->NewNode(ac_bias_repr())
                          ->AsInput()
                          ->assert_is_persistable_var()
2137
                          ->assert_has_n_outputs(1)
N
nhzlx 已提交
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
                          ->assert_is_op_input("affine_channel", "Bias");

  // AC output
  auto *ac_out_var = pattern->NewNode(ac_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("affine_channel");

  conv_op->LinksFrom({conv_input, conv_weight_var}).LinksTo({conv_out_var});

  if (with_eltwise_add) {
    eltwise_op->LinksFrom({conv_out_var, eltwise_y_in_var})
        .LinksTo({eltwise_out_var});
    affine_channel_op->LinksFrom({eltwise_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  } else {
    affine_channel_op->LinksFrom({conv_out_var, ac_scale_var, ac_bias_var})
        .LinksTo({ac_out_var});
  }
  return ac_out_var;
}

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
PDNode *patterns::DequantQuantAny::operator()() {
  auto *dequant_in = pattern->NewNode(dequant_in_repr())
                         ->AsInput()
                         ->assert_is_op_input("dequantize", "Input");

  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *quant_op = pattern->NewNode(quant_op_repr())
                       ->assert_is_op("quantize")
                       ->AsIntermediate();

  auto *quant_out = pattern->NewNode(quant_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("quantize");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksFrom({dequant_in}).LinksTo({dequant_out});
  quant_op->LinksFrom({dequant_out}).LinksTo({quant_out});
  next_op->LinksFrom({quant_out});

  return quant_out;
}

PDNode *patterns::DequantAny::operator()() {
  auto *dequant_op =
      pattern->NewNode(dequant_op_repr())->assert_is_op("dequantize");

  auto *dequant_out = pattern->NewNode(dequant_out_repr())
                          ->AsOutput()
                          ->assert_is_op_output("dequantize", "Output");

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();

  dequant_op->LinksTo({dequant_out});
  next_op->LinksFrom({dequant_out});

  return dequant_out;
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
PDNode *patterns::MultipleQuantize::operator()() {
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  // find nodes that are inputs to quantize operators
  prev_out->assert_more([&](Node *node) {
    int counter = std::count_if(
        node->outputs.begin(), node->outputs.end(), [&](Node const *iter) {
          return iter && iter->IsOp() && iter->Op()->Type() == "quantize";
        });
    return (counter > 1);
  });

  return prev_out;
}

2219 2220 2221
PDNode *patterns::QuantizePlacement::operator()(
    const std::unordered_set<std::string> &quantize_enabled_op_types) {
  std::unordered_set<std::string> supported_op_types =
2222 2223 2224
      std::unordered_set<std::string>(
          {"concat", "conv2d", "elementwise_add", "fc", "matmul", "pool2d",
           "prior_box", "relu", "reshape2", "transpose2", "fusion_gru"});
2225 2226 2227 2228 2229 2230 2231
  if (!quantize_enabled_op_types.empty()) {
    supported_op_types = quantize_enabled_op_types;
  }
  auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
  return op;
}

2232 2233
PDNode *patterns::Bfloat16Placement::operator()(
    const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
J
Jacek Czaja 已提交
2234
  std::unordered_set<std::string> supported_op_types =
2235 2236 2237 2238 2239
      std::unordered_set<std::string>({"concat", "conv2d", "conv2d_transpose",
                                       "elementwise_add", "elementwise_mul",
                                       "fc", "fusion_gru", "gelu", "layer_norm",
                                       "matmul", "pool2d", "relu", "reshape2",
                                       "softmax", "sum", "transpose2"});
2240 2241 2242 2243
  if (!bfloat16_enabled_op_types.empty()) {
    supported_op_types = bfloat16_enabled_op_types;
  }
  auto *op = pattern->NewNode(op_repr())->assert_is_ops(supported_op_types);
2244 2245 2246 2247
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<bool>("use_mkldnn") ||
           node->Op()->Type() == "reshape2";
  });
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
  return op;
}

PDNode *patterns::OrphanedBfloat16::operator()() {
  auto *prev_op = pattern->NewNode(prev_op_repr())->assert_is_op();
  prev_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "float32";
  });
  auto *prev_out = pattern->NewNode(prev_out_repr())->AsOutput();

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();

  auto *next_op = pattern->NewNode(next_op_repr())->assert_is_op();
  next_op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "float32";
  });

  prev_op->LinksTo({prev_out});
  op->LinksFrom({prev_out}).LinksTo({op_out});
  next_op->LinksFrom({op_out});
  return next_op;
}

PDNode *patterns::LastBfloat16Ops::operator()() {
  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  auto *op_out = pattern->NewNode(op_out_repr())->AsOutput();
  op->LinksTo({op_out});
2286
  return op_out;
2287 2288 2289
}

PDNode *patterns::FirstBfloat16Ops::operator()() {
2290
  auto *op_in = pattern->NewNode(op_in_repr())->AsInput();
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301

  auto *op = pattern->NewNode(op_repr())->assert_is_op();
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });

  op->LinksFrom({op_in});
  return op;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310
PDNode *patterns::DuplicatedInputs::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_ops({"concat", "sum"});
  op->assert_more([&](Node *node) {
    return node->Op()->GetAttrIfExists<std::string>("mkldnn_data_type") ==
           "bfloat16";
  });
  return op;
}

2311
PDNode *patterns::MKLDNNInPlace::operator()() {
2312
  const std::unordered_set<std::string> &supported_op_types = {
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
      "abs",
      "elementwise_mul",
      "elementwise_add",
      "gelu",
      "leaky_relu",
      "relu",
      "softmax",
      "sqrt",
      "swish",
      "tanh"};
2323 2324 2325

  auto possible_inplace_op = pattern->NewNode(inplace_to_be_op_repr())
                                 ->assert_is_ops(supported_op_types);
2326 2327

  auto input = pattern->NewNode(inplace_to_be_op_in_repr())
2328
                   ->assert_is_ops_input(supported_op_types)
2329 2330
                   ->AsInput();
  auto output = pattern->NewNode(inplace_to_be_op_out_repr())
2331
                    ->assert_is_ops_output(supported_op_types)
2332
                    ->AsOutput();
2333 2334

  auto next_op = pattern->NewNode(next_op_repr())->assert_is_op();
2335
  auto next_output = pattern->NewNode(next_op_out_repr())->AsOutput();
2336 2337 2338 2339

  // Check if op is MKL-DNN enabled
  possible_inplace_op->assert_op_attr("use_mkldnn", true);

2340
  // linked structure
2341 2342 2343
  possible_inplace_op->LinksTo({output});
  possible_inplace_op->LinksFrom({input});
  next_op->LinksFrom({output});
2344
  next_op->LinksTo({next_output});
2345 2346 2347 2348

  return possible_inplace_op;
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
// a -> transpose_op(1) -> transpose_out_a -> flatten_op(1) -> flatten_out_a
// b -> transpose_op(2) -> transpose_out_b -> flatten_op(2) -> flatten_out_b
// ...
// z -> transpose_op(n) -> transpose_out_z -> flatten_op(n) -> flatten_out_z
// flatten_out_a -> concat_op  flatten_out_b -> concat_op ... flatten_out_z ->
// concat_op
PDNode *patterns::TransposeFlattenConcat::operator()(
    std::vector<PDNode *> conv_in, int times) {
  // The times represents the repeat times of the
  // {trans, trans_out, flatten, flatten_out}
  const int kNumFields = 4;
  const int kTransOutOffset = 1;
  const int kFlattenOffset = 2;
  const int kFlattenOutOffset = 3;

  std::vector<PDNode *> nodes;

  for (int i = 0; i < times; i++) {
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose" + std::to_string(i)))
            ->assert_is_op("transpose2"));
    nodes.push_back(
        pattern->NewNode(GetNodeName("transpose_out" + std::to_string(i)))
            ->assert_is_op_output("transpose2")
            ->assert_is_op_input("flatten2", "X")
            ->AsIntermediate());
    nodes.push_back(pattern->NewNode(GetNodeName("flatten" + std::to_string(i)))
                        ->assert_is_op("flatten2"));

    nodes.push_back(
        pattern->NewNode(GetNodeName("flatten_out" + std::to_string(i)))
            ->assert_is_op_output("flatten2")
            ->assert_is_op_nth_input("concat", "X", i)
            ->AsIntermediate());
  }

  auto concat_op = pattern->NewNode(GetNodeName("concat"))
                       ->assert_is_op("concat")
                       ->assert_op_has_n_inputs("concat", times);
  auto concat_out = pattern->NewNode(GetNodeName("concat_out"))
                        ->assert_is_op_output("concat")
                        ->AsOutput();

  std::vector<PDNode *> flatten_outs;
  for (int i = 0; i < times; i++) {
    conv_in[i]->AsInput();
    // trans
    nodes[i * kNumFields]->LinksFrom({conv_in[i]});
    // trans_out
    nodes[i * kNumFields + kTransOutOffset]->LinksFrom({nodes[i * kNumFields]});
    // flatten
    nodes[i * kNumFields + kFlattenOffset]->LinksFrom(
        {nodes[i * kNumFields + kTransOutOffset]});
    // flatten_out
    nodes[i * kNumFields + kFlattenOutOffset]->LinksFrom(
        {nodes[i * kNumFields + kFlattenOffset]});
    flatten_outs.push_back(nodes[i * kNumFields + kFlattenOutOffset]);
  }

  concat_op->LinksFrom(flatten_outs).LinksTo({concat_out});
  return concat_out;
}

2412 2413 2414
void patterns::DeleteQuantOpFuse::operator()(PDNode *input_act_node,
                                             const std::string &quant_type) {
  auto *input_scale_node = pattern->NewNode(GetNodeName("input_scale_node"))
2415 2416
                               ->assert_is_op_input(quant_type, "InScale")
                               ->AsInput();
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
  auto *quant_node =
      pattern->NewNode(GetNodeName("quant_node"))->assert_is_op(quant_type);
  auto *output_scale_node = pattern->NewNode(GetNodeName("output_scale_node"))
                                ->assert_is_op_output(quant_type, "OutScale")
                                ->AsOutput();
  auto *output_act_node = pattern->NewNode(GetNodeName("output_act_node"))
                              ->assert_is_op_output(quant_type, "Out")
                              ->AsOutput();
  quant_node->LinksFrom({input_scale_node, input_act_node});
  output_scale_node->LinksFrom({quant_node});
  output_act_node->LinksFrom({quant_node});
}

void patterns::DequantOpFuse::operator()(PDNode *quantized_op_input,
                                         const std::string &quantized_op_type,
                                         const std::string &dequant_type,
                                         const std::string &weight_name) {
  auto *quantized_op_weight =
      pattern->NewNode(GetNodeName("quantized_op_weight"))
          ->assert_is_op_input(quantized_op_type, weight_name)
          ->AsInput();
  auto *quantized_op = pattern->NewNode(GetNodeName("quantized_op"))
                           ->assert_is_op(quantized_op_type);
  auto *quantized_op_out = pattern->NewNode(GetNodeName("quantized_op_out"))
                               ->assert_is_op_output(quantized_op_type)
                               ->assert_is_op_input(dequant_type, "X");
  auto *dequant_op =
      pattern->NewNode(GetNodeName("dequant_op"))->assert_is_op(dequant_type);
  auto *dequant_op_out = pattern->NewNode(GetNodeName("dequant_op_out"))
                             ->assert_is_op_output(dequant_type, "Out")
                             ->AsOutput();
  PDNode *dequant_channel_scale = nullptr;
2449
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
2450 2451 2452 2453
    dequant_channel_scale =
        pattern->NewNode(GetNodeName("dequant_channel_scale"))
            ->assert_is_op_nth_input(dequant_type, "Scales", 0)
            ->AsInput();
N
nhzlx 已提交
2454
  }
2455 2456
  quantized_op->LinksFrom({quantized_op_input, quantized_op_weight});
  quantized_op_out->LinksFrom({quantized_op});
N
nhzlx 已提交
2457

2458 2459 2460 2461
  if (dequant_type == "fake_channel_wise_dequantize_max_abs") {
    dequant_op->LinksFrom({quantized_op_out, dequant_channel_scale});
  } else {
    dequant_op->LinksFrom({quantized_op_out});
N
nhzlx 已提交
2462
  }
2463
  dequant_op_out->LinksFrom({dequant_op});
N
nhzlx 已提交
2464 2465
}

2466 2467 2468
void patterns::ShuffleChannelPattern::operator()(PDNode *reshape1_in) {
  auto reshape1_op =
      pattern->NewNode(reshape1_op_repr())->assert_is_op("reshape2");
2469
  reshape1_op->assert_more([&](Node *x) {
2470 2471
    return BOOST_GET_CONST(std::vector<int>, x->Op()->GetAttr("shape"))
               .size() == 5;
2472
  });
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

  auto reshape1_out = pattern->NewNode(reshape1_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->assert_is_op_input("transpose2")
                          ->AsIntermediate();

  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2")
                           ->AsIntermediate();

  auto reshape2_op =
      pattern->NewNode(reshape2_op_repr())->assert_is_op("reshape2");
  auto reshape2_out = pattern->NewNode(reshape2_out_repr())
                          ->assert_is_op_output("reshape2", "Out")
                          ->AsOutput();

  reshape1_op->LinksFrom({reshape1_in});
  reshape1_out->LinksFrom({reshape1_op});
  transpose_op->LinksFrom({reshape1_out});
  transpose_out->LinksFrom({transpose_op});
  reshape2_op->LinksFrom({transpose_out});
  reshape2_out->LinksFrom({reshape2_op});
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
void patterns::DeleteQuantDequantOpPattern::operator()() {
  auto any_op_out =
      pattern->NewNode(any_op_out_repr())
          ->assert_is_op_input(
              "fake_quantize_dequantize_moving_average_abs_max", "X")
          ->AsInput();

  auto quant_dequant_op_inscale =
      pattern->NewNode(quant_dequant_op_inscale_repr())
          ->assert_is_op_input(
              "fake_quantize_dequantize_moving_average_abs_max", "InScale")
          ->AsInput();
  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_op("fake_quantize_dequantize_moving_average_abs_max");

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_op_output(
              "fake_quantize_dequantize_moving_average_abs_max", "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_op_output(
              "fake_quantize_dequantize_moving_average_abs_max", "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({any_op_out, quant_dequant_op_inscale});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
void patterns::DeleteQuantDequantFilterOpPattern::operator()() {
  auto quant_dequant_op_x =
      pattern->NewNode(quant_dequant_op_x_repr())
          ->assert_is_ops_input(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "X")
          ->AsInput();

  auto quant_dequant_op =
      pattern->NewNode(quant_dequant_op_repr())
          ->assert_is_ops({"fake_channel_wise_quantize_dequantize_abs_max",
                           "fake_quantize_dequantize_abs_max"});

  auto quant_dequant_out =
      pattern->NewNode(quant_dequant_op_out_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "Out")
          ->AsIntermediate();

  auto quant_dequant_op_outscale =
      pattern->NewNode(quant_dequant_op_outscale_repr())
          ->assert_is_ops_output(
              {"fake_channel_wise_quantize_dequantize_abs_max",
               "fake_quantize_dequantize_abs_max"},
              "OutScale")
          ->AsOutput();
  auto any_op2 = pattern->NewNode(any_op2_repr())->assert_is_op()->AsOutput();

  quant_dequant_op->LinksFrom({quant_dequant_op_x});
  quant_dequant_op_outscale->LinksFrom({quant_dequant_op});
  quant_dequant_out->LinksFrom({quant_dequant_op});
  any_op2->LinksFrom({quant_dequant_out});
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
PDNode *patterns::ReshapeTransposeMatmulPattern::operator()(
    bool with_reshape_xshape, bool with_transpose_xshape) {
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto reshape_in = pattern->NewNode(reshape_in_repr())
                        ->AsInput()
                        ->assert_is_op_input("reshape2", "X");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsIntermediate()
                         ->assert_is_op_input("transpose2", "X")
                         ->assert_is_op_output("reshape2", "Out");
  if (!with_reshape_xshape)
    reshape_out->assert_is_only_output_of_op("reshape2");

  auto reshape_xshape = with_reshape_xshape
                            ? pattern->NewNode(reshape_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("reshape2", "XShape")
                            : nullptr;

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_input("matmul")
                           ->assert_is_op_output("transpose2", "Out");
  if (!with_transpose_xshape)
    transpose_out->assert_is_only_output_of_op("transpose2");

  auto transpose_xshape =
      with_transpose_xshape
          ? pattern->NewNode(transpose_xshape_repr())
                ->AsIntermediate()
                ->assert_is_op_output("transpose2", "XShape")
          : nullptr;

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsOutput()
                        ->assert_is_op_output("matmul", "Out");

  reshape_op->LinksFrom({reshape_in}).LinksTo({reshape_out});
  if (with_reshape_xshape) reshape_op->LinksTo({reshape_xshape});
  transpose_op->LinksFrom({reshape_out}).LinksTo({transpose_out});
  if (with_transpose_xshape) transpose_op->LinksTo({transpose_xshape});
  matmul_op->LinksFrom({transpose_out}).LinksTo({matmul_out});
  return matmul_out;
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
PDNode *patterns::MatmulTransposeReshapePattern::operator()() {
  auto reshape_op =
      pattern->NewNode(reshape_op_repr())->assert_is_op("reshape2");
  auto transpose_op =
      pattern->NewNode(transpose_op_repr())->assert_is_op("transpose2");
  auto matmul_op = pattern->NewNode(matmul_op_repr())->assert_is_op("matmul");

  auto matmul_out = pattern->NewNode(matmul_out_repr())
                        ->AsInput()
                        ->assert_is_op_output("matmul", "Out")
                        ->assert_is_op_input("transpose2", "X");

  auto transpose_out = pattern->NewNode(transpose_out_repr())
                           ->AsIntermediate()
                           ->assert_is_op_output("transpose2", "Out")
                           ->assert_is_op_input("reshape2", "X");

  auto transpose_out_xshape = pattern->NewNode(transpose_out_xshape_repr())
                                  ->AsIntermediate()
                                  ->assert_is_op_output("transpose2", "XShape");

  auto reshape_out = pattern->NewNode(reshape_out_repr())
                         ->AsOutput()
                         ->assert_is_op_output("reshape2");

  auto reshape_out_xshape = pattern->NewNode(reshape_out_xshape_repr())
                                ->AsIntermediate()
                                ->assert_is_op_output("reshape2", "XShape");

  matmul_op->LinksTo({matmul_out});
  transpose_op->LinksTo({transpose_out_xshape});
  reshape_op->LinksTo({reshape_out_xshape});
  transpose_op->LinksFrom({matmul_out}).LinksTo({transpose_out});
  reshape_op->LinksFrom({transpose_out}).LinksTo({reshape_out});
  return reshape_out;
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
PDNode *patterns::FusionGru::operator()() {
  auto op = pattern->NewNode(op_repr())->assert_is_op("fusion_gru");
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto weight_h = pattern->NewNode(weight_h_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightH");
  auto weight_x = pattern->NewNode(weight_x_repr())
                      ->AsInput()
                      ->assert_is_op_input("fusion_gru", "WeightX");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("fusion_gru", "Hidden");
  op->LinksFrom({x, weight_h, weight_x}).LinksTo({out});
  return out;
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
PDNode *patterns::TwoFusionGruConcat::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "X");
  auto gru1 =
      pattern->NewNode(gru1_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == false;
          });
  auto gru2 =
      pattern->NewNode(gru2_repr())
          ->assert_is_op("fusion_gru")
          ->assert_more([&](Node *node) {
            return node->Op()->GetAttrIfExists<bool>("is_reverse") == true;
          });
  auto wh1 = pattern->NewNode(wh1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wh2 = pattern->NewNode(wh2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightH");
  auto wx1 = pattern->NewNode(wx1_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto wx2 = pattern->NewNode(wx2_repr())
                 ->AsInput()
                 ->assert_is_op_input("fusion_gru", "WeightX");
  auto b1 = pattern->NewNode(b1_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto b2 = pattern->NewNode(b2_repr())->AsInput()->assert_is_op_input(
      "fusion_gru", "Bias");
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto h2 = pattern->NewNode(h2_repr())
                ->AsOutput()
                ->assert_is_op_output("fusion_gru", "Hidden")
                ->assert_is_op_input("concat")
                ->AsIntermediate();
  auto concat = pattern->NewNode(concat_repr())->assert_is_op("concat");
  auto out = pattern->NewNode(out_repr())
                 ->AsOutput()
                 ->assert_is_op_output("concat", "Out");
  gru1->LinksFrom({x, wh1, wx1, b1}).LinksTo({h1});
  gru2->LinksFrom({x, wh2, wx2, b2}).LinksTo({h2});
  concat->LinksFrom({h1, h2}).LinksTo({out});
  return out;
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
PDNode *patterns::MultiGruSeq::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru1 = pattern->NewNode(gru1_repr())->assert_is_op("multi_gru");
  auto wx11 = pattern->NewNode(wx11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx12 = pattern->NewNode(wx12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh11 = pattern->NewNode(wh11_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh12 = pattern->NewNode(wh12_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b11 = pattern->NewNode(b11_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b12 = pattern->NewNode(b12_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h1 = pattern->NewNode(h1_repr())
                ->AsOutput()
                ->assert_is_op_output("multi_gru", "Hidden")
                ->assert_is_op_input("multi_gru", "X")
                ->AsIntermediate();
  auto gru2 = pattern->NewNode(gru2_repr())->assert_is_op("multi_gru");
  auto wx21 = pattern->NewNode(wx21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 0);
  auto wx22 = pattern->NewNode(wx22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightX", 1);
  auto wh21 = pattern->NewNode(wh21_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 0);
  auto wh22 = pattern->NewNode(wh22_repr())
                  ->AsInput()
                  ->assert_is_op_nth_input("multi_gru", "WeightH", 1);
  auto b21 = pattern->NewNode(b21_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 0);
  auto b22 = pattern->NewNode(b22_repr())
                 ->AsInput()
                 ->assert_is_op_nth_input("multi_gru", "Bias", 1);
  auto h2 = pattern->NewNode(h2_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru1->LinksFrom({x, wx11, wx12, wh11, wh12, b11, b12}).LinksTo({h1});
  gru2->LinksFrom({h1, wx21, wx22, wh21, wh22, b21, b22}).LinksTo({h2});
  return h2;
}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
PDNode *patterns::MultiGru::operator()() {
  auto x = pattern->NewNode(x_repr())->AsInput()->assert_is_op_input(
      "multi_gru", "X");
  auto gru = pattern->NewNode(gru_repr())->assert_is_op("multi_gru");
  auto wx = pattern->NewNode(wx_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightX", 0);
  auto wh = pattern->NewNode(wh_repr())->AsInput()->assert_is_op_nth_input(
      "multi_gru", "WeightH", 0);
  auto h = pattern->NewNode(h_repr())->AsOutput()->assert_is_op_output(
      "multi_gru", "Hidden");
  gru->LinksFrom({x, wx, wh}).LinksTo({h});
  return h;
}

2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
PDNode *patterns::LayerNorm::operator()() {
  auto *x = pattern->NewNode(x_repr())->AsInput()->assert_is_ops_input(
      {"reduce_mean", "elementwise_sub"});
  auto *x_mean = pattern->NewNode(x_mean_repr())->assert_is_op("reduce_mean");
  auto *x_mean_out = pattern->NewNode(x_mean_out_repr())
                         ->assert_is_op_output("reduce_mean", "Out")
                         ->assert_is_op_input("elementwise_sub", "Y")
                         ->AsIntermediate();
  auto *x_sub_mean =
      pattern->NewNode(x_sub_mean_repr())->assert_is_op("elementwise_sub");
  auto *x_sub_mean_out =
      pattern->NewNode(x_sub_mean_out_repr())
          ->assert_is_op_output("elementwise_sub")
          ->assert_is_ops_input({"elementwise_pow", "elementwise_div"}, "X")
          ->AsIntermediate();
  auto *sqr_pow = pattern->NewNode(sqr_pow_repr())
                      ->assert_is_op_input("elementwise_pow", "Y")
                      ->assert_is_persistable_var()
                      ->AsInput();
  auto *x_sub_mean_sqr =
      pattern->NewNode(x_sub_mean_sqr_repr())->assert_is_op("elementwise_pow");
  auto *x_sub_mean_sqr_out = pattern->NewNode(x_sub_mean_sqr_out_repr())
                                 ->assert_is_op_output("elementwise_pow")
                                 ->assert_is_op_input("reduce_mean")
                                 ->AsIntermediate();
  auto *std_dev = pattern->NewNode(std_dev_repr())->assert_is_op("reduce_mean");
  auto *std_dev_out = pattern->NewNode(std_dev_out_repr())
                          ->assert_is_op_output("reduce_mean")
                          ->assert_is_op_input("elementwise_add")
                          ->AsIntermediate();
  auto *eps = pattern->NewNode(eps_repr())
                  ->assert_is_op_input("elementwise_add", "Y")
                  ->assert_is_persistable_var()
                  ->AsInput();
  auto *std_dev_eps =
      pattern->NewNode(std_dev_eps_repr())->assert_is_op("elementwise_add");
  auto *std_dev_eps_out = pattern->NewNode(std_dev_eps_out_repr())
                              ->assert_is_op_output("elementwise_add")
                              ->assert_is_op_input("sqrt")
                              ->AsIntermediate();
  auto *std_dev_eps_sqrt =
      pattern->NewNode(std_dev_eps_sqrt_repr())->assert_is_op("sqrt");
  auto *std_dev_eps_sqrt_out = pattern->NewNode(std_dev_eps_sqrt_out_repr())
                                   ->assert_is_op_output("sqrt")
                                   ->assert_is_op_input("elementwise_div", "Y")
                                   ->AsIntermediate();
  auto *division =
      pattern->NewNode(division_repr())->assert_is_op("elementwise_div");
  auto *division_out = pattern->NewNode(division_out_repr())
                           ->assert_is_op_output("elementwise_div")
                           ->assert_is_op_input("elementwise_mul")
                           ->AsIntermediate();
  auto *gamma = pattern->NewNode(gamma_repr())
                    ->assert_is_op_input("elementwise_mul", "Y")
                    ->assert_is_persistable_var()
                    ->AsInput();
  auto *scale = pattern->NewNode(scale_repr())->assert_is_op("elementwise_mul");
  auto *scale_out = pattern->NewNode(scale_out_repr())
                        ->assert_is_op_output("elementwise_mul")
                        ->assert_is_op_input("elementwise_add")
                        ->AsIntermediate();
  auto *beta = pattern->NewNode(beta_repr())
                   ->assert_is_op_input("elementwise_add", "Y")
                   ->assert_is_persistable_var()
                   ->AsInput();
  auto *shift = pattern->NewNode(shift_repr())->assert_is_op("elementwise_add");
  auto *shift_out = pattern->NewNode(shift_out_repr())
                        ->assert_is_op_output("elementwise_add")
                        ->AsOutput();

  /*
   *            X
   *           / \
   *          /   reduce_mean "u(x)"
   *          \   /
   *      elementwise_sub     "x - u(x)"
   *      /           \    2
   *      |            \  /
   *      |      elementwise_pow  "(x - u(x))^2"
   *      |             |
   *      |       reduce_mean     "sigma^2 = 1/C*Sum{(x - u(x))^2}"
   *      |             |     eps
   *      |             |     /
   *      |       elementwise_add "sigma^2 + epsilon"
   *      \             |
   *       \           sqrt       "sqrt(sigma^2 + epsilon)"
   *        \          /
   *         \        /
   *       elementwise_div        "lnorm = {x-u(x)}/{sqrt(sigma^2 + epsilon)}"
   *              |
   *       gamma  |
   *          \   |
   *       elementwise_mul        "scale: gamma(C) * lnorm"
   *              |
   *        beta  |
   *          \   |
   *       elementwise_add        "shift: gamma(C) * lnorm + beta(C)"
   */

  x_mean->LinksFrom({x}).LinksTo({x_mean_out});
  x_sub_mean->LinksFrom({x, x_mean_out}).LinksTo({x_sub_mean_out});
  x_sub_mean_sqr->LinksFrom({x_sub_mean_out, sqr_pow})
      .LinksTo({x_sub_mean_sqr_out});
  std_dev->LinksFrom({x_sub_mean_sqr_out}).LinksTo({std_dev_out});
  std_dev_eps->LinksFrom({std_dev_out, eps}).LinksTo({std_dev_eps_out});

  std_dev_eps_sqrt->LinksFrom({std_dev_eps_out})
      .LinksTo({std_dev_eps_sqrt_out});
  division->LinksFrom({x_sub_mean_out, std_dev_eps_sqrt_out})
      .LinksTo({division_out});
  scale->LinksFrom({division_out, gamma}).LinksTo({scale_out});
  shift->LinksFrom({scale_out, beta}).LinksTo({shift_out});

  return shift_out;
}

2912 2913 2914
}  // namespace ir
}  // namespace framework
}  // namespace paddle