math_function.h 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
T
tensor-tang 已提交
16
#ifdef PADDLE_WITH_MKLML
Q
qijun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif

#ifdef PADDLE_USE_ATLAS
extern "C" {
#include <cblas.h>
#include <clapack.h>
}
#endif

#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif

#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
                   int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
                   int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
                   const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
                   const int* ipiv);
}
#endif

#include <cmath>
Q
qijun 已提交
49

Y
Yi Wang 已提交
50 51 52 53 54
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
Q
qijun 已提交
55 56 57 58 59

namespace paddle {
namespace operators {
namespace math {

Q
qijun 已提交
60 61
// Support continuous memory now
// If transA = N, and transB = N
M
Markus Kliegl 已提交
62
// Then matrixA: M * K, matrixB: K * N, matrixC : M * N
Q
qijun 已提交
63 64
// For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
Q
QI JUN 已提交
65 66
template <typename DeviceContext, typename T>
void gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
67 68
          const CBLAS_TRANSPOSE transB, const int M, const int N, const int K,
          const T alpha, const T* A, const T* B, const T beta, T* C);
Q
qijun 已提交
69

G
guosheng 已提交
70
// gemm wrapper with stride args for matrix uncontinuous in memory
Q
QI JUN 已提交
71 72 73 74 75
template <typename DeviceContext, typename T>
void gemm(const DeviceContext& context, const bool transA, const bool transB,
          const int M, const int N, const int K, const T alpha, const T* A,
          const int lda, const T* B, const int ldb, const T beta, T* C,
          const int ldc);
G
guosheng 已提交
76

Q
qijun 已提交
77
// matrix multiply with continuous memory
Q
QI JUN 已提交
78 79 80 81
template <typename DeviceContext, typename T>
void matmul(const DeviceContext& context, const framework::Tensor& matrix_a,
            bool trans_a, const framework::Tensor& matrix_b, bool trans_b,
            T alpha, framework::Tensor* matrix_out, T beta);
Q
qijun 已提交
82

M
Markus Kliegl 已提交
83
// Batched gemm
Q
QI JUN 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
template <typename DeviceContext, typename T>
void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB, const int M, const int N,
                  const int K, const T alpha, const T* A, const T* B,
                  const T beta, T* C, const int batchCount, const int strideA,
                  const int strideB);

template <typename DeviceContext, typename T>
void gemv(const DeviceContext& context, const bool trans_a, const int M,
          const int N, const T alpha, const T* A, const T* B, const T beta,
          T* C);

template <typename DeviceContext, typename T>
void axpy(const DeviceContext& context, const int n, const T alpha, const T* x,
          T* y);

template <typename DeviceContext, typename T, int Rank>
101
struct Transpose {
Q
QI JUN 已提交
102 103
  void operator()(const DeviceContext& context, const framework::Tensor& in,
                  framework::Tensor* out, const std::vector<int>& axis);
104 105
};

Q
QI JUN 已提交
106
template <typename DeviceContext, typename T>
Q
qijun 已提交
107
struct SetConstant {
Q
QI JUN 已提交
108 109
  void operator()(const DeviceContext& context, framework::Tensor* tensor,
                  T num);
Q
qijun 已提交
110 111
};

112 113 114 115 116 117 118
template <typename Place>
void set_constant_with_place(const platform::DeviceContext& context,
                             framework::Tensor* tensor, float value);

void set_constant(const platform::DeviceContext& context,
                  framework::Tensor* tensor, float value);

Q
QI JUN 已提交
119
template <typename DeviceContext, typename T>
120
struct RowwiseAdd {
Q
QI JUN 已提交
121 122
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  const framework::Tensor& vec, framework::Tensor* output);
123 124
};

Q
QI JUN 已提交
125
template <typename DeviceContext, typename T>
126
struct ColwiseSum {
Q
QI JUN 已提交
127 128
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
129 130
};

C
chengduoZH 已提交
131 132 133 134 135 136 137 138 139 140 141 142
template <typename DeviceContext, typename T>
struct RowwiseSum {
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
};

template <typename DeviceContext, typename T>
struct RowwiseMean {
  void operator()(const DeviceContext& context, const framework::Tensor& input,
                  framework::Tensor* vec);
};

Q
qijun 已提交
143 144 145
}  // namespace math
}  // namespace operators
}  // namespace paddle