test_momentum_op.py 26.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
sidgoyal78 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
J
Jiawei Wang 已提交
22 23
import paddle
import paddle.fluid as fluid
S
sidgoyal78 已提交
24 25


26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def calculate_momentum_by_numpy(param,
                                grad,
                                mu,
                                velocity,
                                use_nesterov,
                                learning_rate,
                                regularization_method=None,
                                regularization_coeff=1.0):
    if regularization_method == "l2_decay":
        grad = grad + regularization_coeff * param

        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - (grad + velocity_out * mu) * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
    else:
        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - grad * learning_rate - \
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out

    return param_out, velocity_out


K
kavyasrinet 已提交
53
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
54 55
    def setUp(self):
        self.op_type = "momentum"
W
Wu Yi 已提交
56 57
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
58

W
Wu Yi 已提交
59 60 61
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
62
        learning_rate = np.array([0.001]).astype(np.float32)
S
sidgoyal78 已提交
63
        mu = 0.0001
K
kavyasrinet 已提交
64
        use_nesterov = False
S
sidgoyal78 已提交
65 66 67 68 69 70 71 72 73 74

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {'mu': mu}

75 76 77 78 79 80 81
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
            learning_rate=learning_rate)
K
kavyasrinet 已提交
82 83 84

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
85 86 87
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
88 89 90 91
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
92 93 94 95 96 97 98 99
class TestMomentumOpFp16(TestMomentumOp1):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
100
class TestMomentumOp2(OpTest):
101
    '''Test Momentum with default values for attributes
K
kavyasrinet 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    '''

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

121
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
122

123 124 125 126 127 128 129
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
            learning_rate=learning_rate)
S
sidgoyal78 已提交
130 131 132 133 134 135 136

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestLarsMomentumOpWithMP(OpTest):
    def setUp(self):
        self.op_type = "lars_momentum"

        master_param = np.random.random((123, 321)).astype("float32")
        param = master_param.astype("float16")
        grad = np.random.random((123, 321)).astype("float16")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005
        rescale_grad = 1.0

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate,
            'MasterParam': master_param,
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
            'lars_weight_decay': lars_weight_decay,
            'multi_precision': True,
            'rescale_grad': rescale_grad
        }

        fp32_grad = grad.astype("float32")
        pnorm = np.sqrt(np.square(master_param).sum())
        gnorm = np.sqrt(np.square(fp32_grad).sum())
        local_lr = learning_rate * lars_coeff * pnorm / (
            gnorm + lars_weight_decay * pnorm)
        fp32_grad = fp32_grad * rescale_grad
        velocity_out = mu * velocity + local_lr * (fp32_grad + lars_weight_decay
                                                   * master_param)
        p_new = master_param - velocity_out
        param_out = p_new.astype("float16")
        master_param_out = p_new

        self.outputs = {
            'ParamOut': param_out,
            'VelocityOut': velocity_out,
            'MasterParamOut': master_param_out
        }

    def test_check_output(self):
        paddle.enable_static()
        if core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place)


195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
class TestLarsMomentumOp(OpTest):
    def setUp(self):
        self.op_type = "lars_momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
            'lars_weight_decay': lars_weight_decay
        }

        pnorm = np.sqrt(np.square(param).sum())
        gnorm = np.sqrt(np.square(grad).sum())
        local_lr = learning_rate * lars_coeff * pnorm / (
            gnorm + lars_weight_decay * param)
        velocity_out = mu * velocity + local_lr * (grad + lars_weight_decay *
                                                   param)
        param_out = param - velocity_out

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
231
        paddle.enable_static()
232 233 234
        self.check_output()


235 236 237
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False
238 239
        self.regularization_method = ""
        self.regularization_coeff = 1.0
240 241 242 243 244 245 246 247 248 249

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
250 251
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
270 271 272 273 274
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
        velocity_out_np_array = np.full((height, row_numel),
275
                                        0.0).astype("float32")
D
dzhwinter 已提交
276
        velocity_out.set(velocity_out_np_array, place)
277

278
        # create and initialize LearningRate Variable
279 280 281 282 283 284 285 286 287 288 289 290 291 292
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
293 294 295
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff)
296 297 298 299
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
300
        velocity_out_np_array = np.array(velocity_out)
301 302 303

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
304 305 306
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
307

D
dzhwinter 已提交
308
        _param = param_array
309 310 311 312 313 314 315 316 317 318 319

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff)

320
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
321
        self.assertTrue((_param_out == param_out_np_array).all())
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
class TestSparseMomentumOpWithMultiPrecision(unittest.TestCase):
    def setUp(self):
        self.init_args()
        self.regularization_method = ""
        self.regularization_coeff = 1.0

    def check_with_place(self, place):
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        # create and initialize Param Variable
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")

        param = scope.var('Param').get_tensor()
        param.set(param_array.astype("float16"), place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out.set(param_out_array.astype("float16"), place)

        master_param = scope.var('MasterParam').get_tensor()
        master_param.set(param_array, place)
        master_param_out = scope.var("MasterParamOut").get_tensor()
        master_param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array.astype("float16"), place)

        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
        velocity_out_np_array = np.full((height, row_numel),
                                        0.0).astype("float32")
        velocity_out.set(velocity_out_np_array, place)

        # create and initialize LearningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            MasterParam='MasterParam',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            MasterParamOut='MasterParamOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
            multi_precision=True,
            rescale_grad=1.0)
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
        velocity_out_np_array = np.array(velocity_out)

        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]

        _param = param_array

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff)

        self.assertTrue((_velocity_out == velocity_out_np_array).all())
        self.assertTrue((_param_out == param_out_np_array).all())

    def init_args(self):
        self.use_nesterov = False

    def test_sparse_momentum(self):
        if core.is_compiled_with_cuda():
            self.check_with_place(fluid.CUDAPlace(0))


class TestSparseMomentumOpWithMultiPrecision2(
        TestSparseMomentumOpWithMultiPrecision):
    def init_args(self):
        self.use_nesterov = True


J
Jiawei Wang 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
class TestMomentumV2(unittest.TestCase):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01, momentum=0.9, parameters=linear.parameters())
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_momentum(self):
463
        paddle.enable_static()
J
Jiawei Wang 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            rms_optimizer = paddle.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9)
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1)
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
        self.assertRaises(
            ValueError, paddle.optimizer.Momentum, learning_rate=None)
        self.assertRaises(ValueError, paddle.optimizer.Momentum, momentum=None)


492 493 494 495 496 497 498 499 500 501 502 503
class TestMomentumOpWithDecay(OpTest):
    def setUp(self):
        self.op_type = "momentum"
        self.dtype = np.float32
        self.use_nesterov = True
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9
        self.init_config()

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
504
        learning_rate = np.array([0.001]).astype(np.float32)
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
        mu = 0.0001
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {
            'mu': mu,
            'use_nesterov': use_nesterov,
            'regularization_method': regularization_method,
            'regularization_coeff': regularization_coeff
        }

        grad = grad + regularization_coeff * param

        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
            learning_rate=learning_rate)

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def init_config(self):
        pass

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()


class TestMomentumOpWithDecayFP16(TestMomentumOpWithDecay):
    def init_config(self):
        self.dtype = np.float16

    def test_check_output(self):
        paddle.enable_static()
        self.check_output(atol=1e-3)


class TestMomentumOpWithDecay2(TestMomentumOpWithDecay):
    def init_config(self):
        self.use_nesterov = False


class TestSparseMomentumOpWithDecay(TestSparseMomentumOp):
    def setUp(self):
        self.use_nesterov = False
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9


class TestSparseMomentumOpWithDecay2(TestSparseMomentumOpWithDecay):
    def init_kernel(self):
        self.use_nesterov = True


class TestMomentumOpWithDecayAPI(unittest.TestCase):
    def _test_momentum_dygraph_common(self, regularization):
        paddle.disable_static()
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
        inp = paddle.to_tensor(inp)
        out = linear(inp)
        loss = paddle.mean(out)
        # This can be any optimizer supported by dygraph.
        momentum = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear.parameters(),
            regularization=regularization)
        momentum.minimize(loss)

    def test_momentum_dygraph_1(self):
        self._test_momentum_dygraph_common(
            regularization=paddle.fluid.regularizer.L2Decay(
                regularization_coeff=0.1))

    def test_momentum_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9)
            momentum_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1)
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
class TestFusedMomentumWithDecayAPI(unittest.TestCase):
    def get_program(self, weight_attr, bias_attr=False):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(
                main_program=main_program, startup_program=startup_program):
            x = paddle.static.data(name='x', shape=[10, 10])
            linear = paddle.nn.Linear(
                10, 10, weight_attr=weight_attr, bias_attr=bias_attr)
            out = linear(x)
            loss = paddle.mean(out)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.01,
                momentum=0.9,
                weight_decay=paddle.regularizer.L2Decay(0.5))
            optimizer.minimize(loss)
        return main_program

    def test_param_has_l2decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
            regularizer=paddle.regularizer.L2Decay(0.1))
        program = self.get_program(weight_attr, bias_attr=False)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.1))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)

    def test_param_has_l1decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
            regularizer=paddle.regularizer.L1Decay(0.1))
        bias_attr = paddle.ParamAttr(
            name="bias",
            initializer=paddle.nn.initializer.Constant(value=0.),
            regularizer=None)
        program = self.get_program(weight_attr, bias_attr)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].type, 'momentum')
        self.assertEqual(ops[-2].type, 'momentum')
        self.assertEqual(ops[-3].type, 'sum')
        self.assertEqual(ops[-4].type, 'scale')
        self.assertEqual(ops[-5].type, 'sign')
667
        self.assertEqual(ops[-6].type, 'matmul_v2_grad')
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
        if 'weight' in ops[-1].input('Param'):
            self.assertEqual(ops[-1].attr('regularization_method'), '')
            self.assertEqual(ops[-1].attr('regularization_coeff'), 0)
        if 'bias' in ops[-2].input('Param'):
            self.assertEqual(ops[-2].attr('regularization_method'), 'l2_decay')
            self.assertEqual(ops[-2].attr('regularization_coeff'),
                             np.float32(0.5))

    def test_param_has_no_regularizer(self):
        paddle.enable_static()
        program = self.get_program(weight_attr=None)
        ops = program.global_block().ops
        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.5))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)


687 688 689 690 691 692 693 694 695 696
class TestMomentumOpVsMomentumOpWithDecayAPI(unittest.TestCase):
    def __update_params(self, momentum, linear):
        for i in range(10):
            inp = paddle.full(
                shape=[2, 2], fill_value=i, dtype='float32').astype("float32")
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            loss.backward()
            momentum.minimize(loss)
697
            linear.clear_gradients()
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

    def __test_vs(self, place=fluid.CPUPlace()):
        paddle.disable_static(place=place)

        linear_old = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
            bias_attr=paddle.nn.initializer.Constant(value=2.0))
        momentum_old = paddle.fluid.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_old.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
                regularization_coeff=0.1))
        self.__update_params(momentum=momentum_old, linear=linear_old)

        linear_new = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
            bias_attr=paddle.nn.initializer.Constant(value=2.0))
        momentum_new = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_new.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
                regularization_coeff=0.1))
        self.__update_params(momentum=momentum_new, linear=linear_new)

        self.assertEqual(
            (linear_old.weight.numpy() == linear_new.weight.numpy()).all(),
            True,
            'the param weight updated by two Momentum optimizers should equal')

    def test_vs(self, place=fluid.CPUPlace()):
        places = [fluid.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            self.__test_vs(place=place)


742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
class TestMomentumV2Group(TestMomentumV2):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01,
            parameters=[{
                'params': linear_1.parameters()
            }, {
                'params': linear_2.parameters(),
                'weight_decay': 0.001,
                'learning_rate': 0.1,
                'momentum': 0.99
            }],
            weight_decay=0.1,
            momentum=0.9)
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


S
sidgoyal78 已提交
769 770
if __name__ == "__main__":
    unittest.main()