test_model.py 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# copyright (c) 2020 paddlepaddle authors. all rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import os
import numpy as np
import shutil
import tempfile

from paddle import fluid
L
LielinJiang 已提交
26
from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential
27 28
from paddle.fluid.dygraph.base import to_variable

29 30
import paddle.incubate.hapi as hapi
from paddle.incubate.hapi import Model, Input
31
from paddle.nn.layer.loss import CrossEntropyLoss
32 33 34 35 36 37 38
from paddle.incubate.hapi.metrics import Accuracy
from paddle.incubate.hapi.datasets import MNIST
from paddle.incubate.hapi.vision.models import LeNet
from paddle.incubate.hapi.distributed import DistributedBatchSampler, prepare_distributed_context


class LeNetDygraph(fluid.dygraph.Layer):
39
    def __init__(self, num_classes=10, classifier_activation=None):
40 41 42 43 44
        super(LeNetDygraph, self).__init__()
        self.num_classes = num_classes
        self.features = Sequential(
            Conv2D(
                1, 6, 3, stride=1, padding=1),
L
LielinJiang 已提交
45
            ReLU(),
46 47 48
            Pool2D(2, 'max', 2),
            Conv2D(
                6, 16, 5, stride=1, padding=0),
L
LielinJiang 已提交
49
            ReLU(),
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            Pool2D(2, 'max', 2))

        if num_classes > 0:
            self.fc = Sequential(
                Linear(400, 120),
                Linear(120, 84),
                Linear(
                    84, 10, act=classifier_activation))

    def forward(self, inputs):
        x = self.features(inputs)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.fc(x)
        return x


class MnistDataset(MNIST):
    def __init__(self, mode, return_label=True, sample_num=None):
        super(MnistDataset, self).__init__(mode=mode)
        self.return_label = return_label
        if sample_num:
            self.images = self.images[:sample_num]
            self.labels = self.labels[:sample_num]

    def __getitem__(self, idx):
        img, label = self.images[idx], self.labels[idx]
        img = np.reshape(img, [1, 28, 28])
        if self.return_label:
            return img, np.array(self.labels[idx]).astype('int64')
        return img,

    def __len__(self):
        return len(self.images)


def compute_acc(pred, label):
    pred = np.argmax(pred, -1)
    label = np.array(label)
    correct = pred[:, np.newaxis] == label
    return np.sum(correct) / correct.shape[0]


def dynamic_train(model, dataloader):
    optim = fluid.optimizer.Adam(
        learning_rate=0.001, parameter_list=model.parameters())
    model.train()
    for inputs, labels in dataloader:
        outputs = model(inputs)
100
        loss = CrossEntropyLoss(reduction="sum")(outputs, labels)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        avg_loss = fluid.layers.reduce_sum(loss)
        avg_loss.backward()
        optim.minimize(avg_loss)
        model.clear_gradients()


def dynamic_evaluate(model, dataloader):
    with fluid.dygraph.no_grad():
        model.eval()
        cnt = 0
        for inputs, labels in dataloader:
            outputs = model(inputs)

            cnt += (np.argmax(outputs.numpy(), -1)[:, np.newaxis] ==
                    labels.numpy()).astype('int').sum()

    return cnt / len(dataloader.dataset)


@unittest.skipIf(not fluid.is_compiled_with_cuda(),
                 'CPU testing is not supported')
class TestModel(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        if not fluid.is_compiled_with_cuda():
            self.skipTest('module not tested when ONLY_CPU compling')
127
        cls.device = hapi.set_device('gpu')
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        fluid.enable_dygraph(cls.device)

        sp_num = 1280
        cls.train_dataset = MnistDataset(mode='train', sample_num=sp_num)
        cls.val_dataset = MnistDataset(mode='test', sample_num=sp_num)
        cls.test_dataset = MnistDataset(
            mode='test', return_label=False, sample_num=sp_num)

        cls.train_loader = fluid.io.DataLoader(
            cls.train_dataset, places=cls.device, batch_size=64)
        cls.val_loader = fluid.io.DataLoader(
            cls.val_dataset, places=cls.device, batch_size=64)
        cls.test_loader = fluid.io.DataLoader(
            cls.test_dataset, places=cls.device, batch_size=64)

        seed = 333
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

        dy_lenet = LeNetDygraph()
        cls.init_param = dy_lenet.state_dict()
        dynamic_train(dy_lenet, cls.train_loader)

        cls.acc1 = dynamic_evaluate(dy_lenet, cls.val_loader)

153 154
        cls.inputs = [Input('image', [-1, 1, 28, 28], 'float32')]
        cls.labels = [Input('label', [None, 1], 'int64')]
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

        cls.save_dir = tempfile.mkdtemp()
        cls.weight_path = os.path.join(cls.save_dir, 'lenet')
        fluid.dygraph.save_dygraph(dy_lenet.state_dict(), cls.weight_path)

        fluid.disable_dygraph()

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.save_dir)

    def test_fit_dygraph(self):
        self.fit(True)

    def test_fit_static(self):
        self.fit(False)

    def test_evaluate_dygraph(self):
        self.evaluate(True)

    def test_evaluate_static(self):
        self.evaluate(False)

    def test_predict_dygraph(self):
        self.predict(True)

    def test_predict_static(self):
        self.predict(False)

    def test_prepare_context(self):
        prepare_distributed_context()

    def fit(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
        seed = 333
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

193
        net = LeNet(classifier_activation=None)
194
        optim_new = fluid.optimizer.Adam(
195 196
            learning_rate=0.001, parameter_list=net.parameters())
        model = Model(net, inputs=self.inputs, labels=self.labels)
197 198
        model.prepare(
            optim_new,
199
            loss_function=CrossEntropyLoss(reduction="sum"),
200
            metrics=Accuracy())
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        model.fit(self.train_dataset, batch_size=64, shuffle=False)

        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        train_sampler = DistributedBatchSampler(
            self.train_dataset, batch_size=64, shuffle=False)
        val_sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        train_loader = fluid.io.DataLoader(
            self.train_dataset,
            batch_sampler=train_sampler,
            places=self.device,
            return_list=True)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=val_sampler,
            places=self.device,
            return_list=True)

        model.fit(train_loader, val_loader)
        fluid.disable_dygraph() if dynamic else None

    def evaluate(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
228 229
        model = Model(LeNet(), self.inputs, self.labels)
        model.prepare(metrics=Accuracy())
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
        model.load(self.weight_path)
        result = model.evaluate(self.val_dataset, batch_size=64)
        np.testing.assert_allclose(result['acc'], self.acc1)

        sampler = DistributedBatchSampler(
            self.val_dataset, batch_size=64, shuffle=False)

        val_loader = fluid.io.DataLoader(
            self.val_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(val_loader)

        fluid.disable_dygraph() if dynamic else None

    def predict(self, dynamic):
        fluid.enable_dygraph(self.device) if dynamic else None
249 250
        model = Model(LeNet(), self.inputs)
        model.prepare()
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        model.load(self.weight_path)
        output = model.predict(
            self.test_dataset, batch_size=64, stack_outputs=True)
        np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))

        acc = compute_acc(output[0], self.val_dataset.labels)
        np.testing.assert_allclose(acc, self.acc1)

        sampler = DistributedBatchSampler(
            self.test_dataset, batch_size=64, shuffle=False)

        test_loader = fluid.io.DataLoader(
            self.test_dataset,
            batch_sampler=sampler,
            places=self.device,
            return_list=True)

        model.evaluate(test_loader)

        fluid.disable_dygraph() if dynamic else None


273
class MyModel(fluid.dygraph.Layer):
274
    def __init__(self, classifier_activation='softmax'):
275
        super(MyModel, self).__init__()
276
        self._fc = Linear(20, 10, act=classifier_activation)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    def forward(self, x):
        y = self._fc(x)
        return y


class TestModelFunction(unittest.TestCase):
    def set_seed(self, seed=1024):
        fluid.default_startup_program().random_seed = seed
        fluid.default_main_program().random_seed = seed

    def test_train_batch(self, dynamic=True):
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)
        label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
296
            m = MyModel(classifier_activation=None)
297 298 299 300
            optim = fluid.optimizer.SGD(learning_rate=0.001,
                                        parameter_list=m.parameters())
            m.train()
            output = m(to_variable(data))
301
            loss = CrossEntropyLoss(reduction='sum')(output, to_variable(label))
302 303 304 305 306 307 308 309 310
            avg_loss = fluid.layers.reduce_sum(loss)
            avg_loss.backward()
            optim.minimize(avg_loss)
            m.clear_gradients()
            fluid.disable_dygraph()
            return avg_loss.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
311
            device = hapi.set_device('cpu')
312 313 314
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()

315
            net = MyModel(classifier_activation=None)
316
            optim2 = fluid.optimizer.SGD(learning_rate=0.001,
317
                                         parameter_list=net.parameters())
318

319 320 321
            inputs = [Input('x', [None, dim], 'float32')]
            labels = [Input('label', [None, 1], 'int64')]
            model = Model(net, inputs, labels)
322 323
            model.prepare(
                optim2, loss_function=CrossEntropyLoss(reduction="sum"))
324 325 326 327 328
            loss, = model.train_batch([data], [label])

            np.testing.assert_allclose(loss.flatten(), ref.flatten())
            fluid.disable_dygraph() if dynamic else None

329
    def test_test_batch(self):
330 331 332 333 334 335 336 337 338 339 340 341 342 343
        dim = 20
        data = np.random.random(size=(4, dim)).astype(np.float32)

        def get_expect():
            fluid.enable_dygraph(fluid.CPUPlace())
            self.set_seed()
            m = MyModel()
            m.eval()
            output = m(to_variable(data))
            fluid.disable_dygraph()
            return output.numpy()

        ref = get_expect()
        for dynamic in [True, False]:
344
            device = hapi.set_device('cpu')
345 346
            fluid.enable_dygraph(device) if dynamic else None
            self.set_seed()
347 348 349 350
            net = MyModel()
            inputs = [Input('x', [None, dim], 'float32')]
            model = Model(net, inputs)
            model.prepare()
351 352
            out, = model.test_batch([data])

353
            np.testing.assert_allclose(out, ref, rtol=1e-6)
354 355 356 357 358
            fluid.disable_dygraph() if dynamic else None

    def test_save_load(self):
        path = tempfile.mkdtemp()
        for dynamic in [True, False]:
359
            device = hapi.set_device('cpu')
360
            fluid.enable_dygraph(device) if dynamic else None
361
            net = MyModel(classifier_activation=None)
362 363
            inputs = [Input('x', [None, 20], 'float32')]
            labels = [Input('label', [None, 1], 'int64')]
364
            optim = fluid.optimizer.SGD(learning_rate=0.001,
365 366
                                        parameter_list=net.parameters())
            model = Model(net, inputs, labels)
367
            model.prepare(
368 369
                optimizer=optim,
                loss_function=CrossEntropyLoss(reduction="sum"))
370 371 372 373 374 375 376
            model.save(path + '/test')
            model.load(path + '/test')
            shutil.rmtree(path)
            fluid.disable_dygraph() if dynamic else None

    def test_dynamic_save_static_load(self):
        path = tempfile.mkdtemp()
377 378 379
        # dynamic saving
        device = hapi.set_device('cpu')
        fluid.enable_dygraph(device)
380
        model = Model(MyModel(classifier_activation=None))
381 382 383
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
        model.prepare(
384
            optimizer=optim, loss_function=CrossEntropyLoss(reduction="sum"))
385 386
        model.save(path + '/test')
        fluid.disable_dygraph()
387 388 389

        inputs = [Input('x', [None, 20], 'float32')]
        labels = [Input('label', [None, 1], 'int64')]
390
        model = Model(MyModel(classifier_activation=None), inputs, labels)
391 392 393
        optim = fluid.optimizer.SGD(learning_rate=0.001,
                                    parameter_list=model.parameters())
        model.prepare(
394
            optimizer=optim, loss_function=CrossEntropyLoss(reduction="sum"))
395 396 397 398 399 400
        model.load(path + '/test')
        shutil.rmtree(path)

    def test_static_save_dynamic_load(self):
        path = tempfile.mkdtemp()

401
        net = MyModel(classifier_activation=None)
402 403
        inputs = [Input('x', [None, 20], 'float32')]
        labels = [Input('label', [None, 1], 'int64')]
404
        optim = fluid.optimizer.SGD(learning_rate=0.001,
405 406
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
407
        model.prepare(
408
            optimizer=optim, loss_function=CrossEntropyLoss(reduction="sum"))
409 410
        model.save(path + '/test')

411
        device = hapi.set_device('cpu')
412 413
        fluid.enable_dygraph(device)  #if dynamic else None

414
        net = MyModel(classifier_activation=None)
415 416
        inputs = [Input('x', [None, 20], 'float32')]
        labels = [Input('label', [None, 1], 'int64')]
417
        optim = fluid.optimizer.SGD(learning_rate=0.001,
418 419
                                    parameter_list=net.parameters())
        model = Model(net, inputs, labels)
420
        model.prepare(
421
            optimizer=optim, loss_function=CrossEntropyLoss(reduction="sum"))
422 423 424 425 426 427
        model.load(path + '/test')
        shutil.rmtree(path)
        fluid.disable_dygraph()

    def test_parameters(self):
        for dynamic in [True, False]:
428
            device = hapi.set_device('cpu')
429
            fluid.enable_dygraph(device) if dynamic else None
430 431 432 433
            net = MyModel()
            inputs = [Input('x', [None, 20], 'float32')]
            model = Model(net, inputs)
            model.prepare()
434 435 436 437 438 439
            params = model.parameters()
            self.assertTrue(params[0].shape[0] == 20)
            self.assertTrue(params[0].shape[1] == 10)
            fluid.disable_dygraph() if dynamic else None

    def test_export_deploy_model(self):
440 441 442 443
        net = LeNet()
        inputs = [Input('image', [-1, 1, 28, 28], 'float32')]
        model = Model(net, inputs)
        model.prepare()
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        save_dir = tempfile.mkdtemp()
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        tensor_img = np.array(
            np.random.random((1, 1, 28, 28)), dtype=np.float32)
        ori_results = model.test_batch(tensor_img)

        model.save_inference_model(save_dir)

        place = fluid.CPUPlace() if not fluid.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        [inference_program, feed_target_names, fetch_targets] = (
            fluid.io.load_inference_model(
                dirname=save_dir, executor=exe))

        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

465
        np.testing.assert_allclose(results, ori_results, rtol=1e-6)
466 467 468 469 470
        shutil.rmtree(save_dir)


if __name__ == '__main__':
    unittest.main()