test_matrixCompare.cpp 47.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU
/// This unittest checks GpuMatrix/CpuMatrix get same result, so disable when
/// only cpu version.

#include <gtest/gtest.h>
Y
Yu Yang 已提交
20
#include "TensorCheck.h"
C
chengduoZH 已提交
21
#include "paddle/math/MathUtils.h"
Y
Yu Yang 已提交
22 23
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
24
#include "paddle/testing/TestUtil.h"
L
liaogang 已提交
25
#include "paddle/utils/DynamicLoader.h"
26
#include "paddle/utils/Stat.h"
Y
Yu Yang 已提交
27
#include "paddle/utils/Util.h"
28

Z
zhangjinchao01 已提交
29 30
using namespace paddle;  // NOLINT
using namespace std;     // NOLINT
31 32
using autotest::TensorCheckEqual;
using autotest::TensorCheckErr;
L
liaogang 已提交
33

Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
void testMatrixMaxSequence(int batchSize, int inputDim) {
  // forward
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  IVectorPtr cpuIndex = nullptr;
  IVectorPtr gpuIndex = nullptr;
  IVector::resizeOrCreate(cpuIndex, newBatchSize * inputDim, false);
  IVector::resizeOrCreate(gpuIndex, newBatchSize * inputDim, true);
  cpuIndex->zeroMem();
  gpuIndex->zeroMem();

  cpuOutput->maxSequenceForward(*cpuInput, *cpuSequence, *cpuIndex);
  gpuOutput->maxSequenceForward(*gpuInput, *gpuSequence, *gpuIndex);

62 63
  TensorCheckEqual(*cpuOutput, *gpuOutput);
  TensorCheckEqual(*cpuIndex, *gpuIndex);
Z
zhangjinchao01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

  // backward
  MatrixPtr cpuOutputGrad = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutputGrad = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutputGrad->randomizeUniform();
  gpuOutputGrad->copyFrom(*cpuOutputGrad);

  MatrixPtr cpuInputGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInputGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInputGrad->randomizeUniform();
  gpuInputGrad->copyFrom(*cpuInputGrad);

  cpuInputGrad->maxSequenceBackward(*cpuOutputGrad, *cpuSequence, *cpuIndex);
  gpuInputGrad->maxSequenceBackward(*gpuOutputGrad, *gpuSequence, *gpuIndex);

79
  TensorCheckEqual(*cpuInputGrad, *gpuInputGrad);
Z
zhangjinchao01 已提交
80 81 82
}

TEST(Matrix, maxSequence) {
Y
Yi Wang 已提交
83 84
  for (auto batchSize : {1, 3, 997}) {   // prime numbers close to 1, 4, 1024
    for (auto inputDim : {1, 7, 131}) {  // prime numbers close to 1, 8, 128
Z
zhangjinchao01 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
      testMatrixMaxSequence(batchSize, inputDim);
    }
  }
}

void testMatrixGetSum(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

#ifndef PADDLE_TYPE_DOUBLE
  int x = log10(height * width);
  real err = 1e-6 * pow(10, x);
#else
  real err = 1e-8;
#endif

  real cpuSum = cpuInput->getSum();
  real gpuSum = gpuInput->getSum();

  EXPECT_LE(fabs(cpuSum - gpuSum), err);
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void testMatrixGetMinMax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  real cpuMin = cpuInput->getMin();
  real gpuMin = gpuInput->getMin();
  real cpuMax = cpuInput->getMax();
  real gpuMax = gpuInput->getMax();

  EXPECT_EQ(cpuMin, gpuMin);
  EXPECT_EQ(cpuMax, gpuMax);
}

Z
zhangjinchao01 已提交
125 126 127 128 129 130 131 132 133 134 135 136
void testMatrixZeroAtOffset(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuTest = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  cpuTest->copyFrom(*cpuA);

  int columnOffset = rand() % width;  // NOLINT we just use rand() for test.
  int numColumns = rand() % (width - columnOffset);  // NOLINT

137 138
  if (numColumns == 0) return;

Z
zhangjinchao01 已提交
139 140 141 142 143 144 145 146 147 148 149
  cpuA->zeroAtOffset(columnOffset, numColumns);
  gpuA->zeroAtOffset(columnOffset, numColumns);

  /* cpuTest */
  real* a = cpuTest->getData() + columnOffset;
  for (int64_t i = 0; i < height; ++i) {
    for (int64_t j = 0; j < numColumns; ++j) {
      a[i * width + j] = 0;
    }
  }

150 151
  TensorCheckEqual(*cpuA, *gpuA);
  TensorCheckEqual(*cpuA, *cpuTest);
Z
zhangjinchao01 已提交
152 153
}

X
xutianbing 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
void testMatrixDeepSwap(int height, int width) {
  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyA = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuCopyB = std::make_shared<CpuMatrix>(height, width);

  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuCopyA->copyFrom(*cpuA);
  cpuCopyB->copyFrom(*cpuB);

  // swap matrix cpuA and cpuB
  cpuA->deepSwap(*cpuB);

H
hedaoyuan 已提交
168 169
  TensorCheckEqual(*cpuA, *cpuCopyB);
  TensorCheckEqual(*cpuB, *cpuCopyA);
X
xutianbing 已提交
170 171
}

Z
zhangjinchao01 已提交
172 173 174 175 176 177 178 179 180
void testMatrixTranspose(int height, int width) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuT = std::make_shared<CpuMatrix>(width, height);
  MatrixPtr gpuT = std::make_shared<GpuMatrix>(width, height);

  cpu->randomizeUniform();
  gpu->copyFrom(*cpu);
  cpu->transpose(cpuT, false);
H
Haonan 已提交
181
  gpu->transpose(gpuT, true);
Z
zhangjinchao01 已提交
182

183
  TensorCheckEqual(*cpuT, *gpuT);
Z
zhangjinchao01 已提交
184 185
}

H
Haonan 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
void testMatrixRotate(int height, int width) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr cpuR = std::make_shared<CpuMatrix>(width, height);
  MatrixPtr gpuR = std::make_shared<GpuMatrix>(width, height);

  cpu->randomizeUniform();
  gpu->copyFrom(*cpu);

  cpu->rotate(cpuR, false, true);
  gpu->rotate(gpuR, true, true);
  TensorCheckEqual(*cpuR, *gpuR);

  cpu->rotate(cpuR, true, false);
  gpu->rotate(gpuR, false, false);
  TensorCheckEqual(*cpuR, *gpuR);
}

L
lzhao4ever 已提交
204 205 206 207 208 209
void testMatrixInverse(int height) {
  MatrixPtr cpu = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpu = std::make_shared<GpuMatrix>(height, height);
  MatrixPtr cpuI = std::make_shared<CpuMatrix>(height, height);
  MatrixPtr gpuI = std::make_shared<GpuMatrix>(height, height);

210
  /* Make matrix well conditioned: cpu * cpuT + Identity */
L
lzhao4ever 已提交
211
  cpu->randomizeUniform();
212 213
  MatrixPtr cpuT = cpu->getTranspose();
  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, height);
214
  outputCheck->mul(*cpu, *cpuT);
215 216 217
  cpu->setDiag(1.0);
  cpu->add(*outputCheck);

L
lzhao4ever 已提交
218
  gpu->copyFrom(*cpu);
219
  cpu->inverse(cpuI, true);
L
lzhao4ever 已提交
220 221
  gpu->inverse(gpuI, false);

222
  TensorCheckErr(*cpuI, *gpuI);
L
lzhao4ever 已提交
223

224
  outputCheck->mul(*cpu, *cpuI);
225
  cpu->setDiag(1.0);
226
  TensorCheckErr(*cpu, *outputCheck);
L
lzhao4ever 已提交
227 228
}

Z
zhangjinchao01 已提交
229
TEST(Matrix, unary) {
L
lzhao4ever 已提交
230 231
  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
Z
zhangjinchao01 已提交
232 233
      VLOG(3) << " height=" << height << " width=" << width;

234
      testMatrixDeepSwap(height, width);
235
      testMatrixZeroAtOffset(height, width);
Z
zhangjinchao01 已提交
236 237
      testMatrixGetSum(height, width);
      testMatrixTranspose(height, width);
H
Haonan 已提交
238
      testMatrixRotate(height, width);
Z
zhangjinchao01 已提交
239
    }
L
liaogang 已提交
240
#ifdef LAPACK_FOUND
L
liaogang 已提交
241
    // inverse matrix
242
    testMatrixInverse(height);
L
liaogang 已提交
243
#else
Y
Yi Wang 已提交
244 245 246 247
    LOG(WARNING) << "This version of PaddlePaddle was not built with LAPACK"
                 << "support so we cannot test matrix inverse. To test "
                 << "matrix inverse, please install LAPACKE "
                 << "and MKL/Openblas/ATLAS, and re-build PaddlePaddle.";
L
liaogang 已提交
248
#endif
Z
zhangjinchao01 已提交
249 250 251
  }
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
void testMatrixSoftmax(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  TensorCheckErr(*cpuOutput, *gpuOutput);
}

Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
void testSequenceSoftmax(int batchSize) {
  // forward
  int inputDim = 1;
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  cpuInput->sequenceSoftmax(*cpuInput, *cpuSequence);
  gpuInput->sequenceSoftmax(*gpuInput, *gpuSequence);

284
  TensorCheckErr(*cpuInput, *gpuInput);
Z
zhangjinchao01 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
}

void testMatrixSoftmaxThreshold(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  cpuInput->getData()[0] = 100.0;
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->zero();
  gpuOutput->zero();
  cpuInput->softmax(*cpuOutput);
  gpuInput->softmax(*gpuOutput);

  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
  outputCheck->copyFrom(*gpuOutput);
  // check output zero
  int cpuCount = 0;
  int gpuCount = 0;
  auto zeroNum = [](MatrixPtr out, int& count) {
    for (size_t i = 0; i < out->getHeight(); i++) {
      for (size_t j = 0; j < out->getWidth(); j++) {
        if (out->getElement(i, j) == 0) count++;
      }
    }
  };
  zeroNum(cpuOutput, cpuCount);
  zeroNum(outputCheck, gpuCount);
  EXPECT_EQ(cpuCount, 0) << "Cpu softmax output value 0";
  EXPECT_EQ(gpuCount, 0) << "Gpu softmax output value 0";
}

void testMatrixSoftmaxBp(int height, int width) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);

  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);
  gpuOutput->softmaxBackward(*gpuInput);

  MatrixPtr sftMaxSum = std::make_shared<CpuMatrix>(height, 1);
  MatrixPtr sftMaxDot = std::make_shared<CpuMatrix>(height, width);
  sftMaxDot->dotMul(*cpuOutput, *cpuInput);
  sftMaxSum->colMerge(*sftMaxDot);
  cpuOutput->softmaxDerivative(*cpuInput, *sftMaxSum);

337
  TensorCheckErr(*cpuOutput, *gpuOutput);
Z
zhangjinchao01 已提交
338 339 340
}

TEST(Matrix, softmax) {
Y
Yi Wang 已提交
341 342
  for (auto height : {1, 3, 131}) {    // prime numbers close to 1, 4, 127
    for (auto width : {1, 17, 251}) {  // prime numbers close to 1, 16, 256
Z
zhangjinchao01 已提交
343 344
      VLOG(3) << " height=" << height << " width=" << width;

345
      testMatrixSoftmax(height, width);
Z
zhangjinchao01 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
      testMatrixSoftmaxBp(height, width);
      testMatrixSoftmaxThreshold(height, width);
    }
    testSequenceSoftmax(height);
  }
}

void testMatrixAddToRows(int numSamples, int tableSize, int inputDim) {
  MatrixPtr cpuTable = std::make_shared<CpuMatrix>(tableSize, inputDim);
  MatrixPtr gpuTable = std::make_shared<GpuMatrix>(tableSize, inputDim);
  cpuTable->randomizeUniform();
  gpuTable->copyFrom(*cpuTable);

  IVectorPtr cpuIds;
  IVectorPtr gpuIds;
  cpuIds = VectorT<int>::create(numSamples, false);
  gpuIds = VectorT<int>::create(numSamples, true);
  cpuIds->rand(tableSize);
  gpuIds->copyFrom(*cpuIds);

  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, inputDim);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);

  cpuOutput->addToRows(*cpuTable, *cpuIds);
  gpuOutput->addToRows(*gpuTable, *gpuIds);

374
  TensorCheckErr(*cpuTable, *gpuTable);
Z
zhangjinchao01 已提交
375 376 377 378 379 380 381
}

TEST(Matrix, tableProjection) {
  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
    for (auto tableSize : {10, 100}) {
      for (auto inputDim : {20, 50}) {
        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
382
                << " inputDim=" << inputDim;
Z
zhangjinchao01 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        testMatrixAddToRows(numSamples, tableSize, inputDim);
      }
    }
  }
}

void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

413 414
  cpuC->mul(*cpuA, *cpuB, alpha, beta);
  gpuC->mul(*gpuA, *gpuB, alpha, beta);
Z
zhangjinchao01 已提交
415

416
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
}

void testSubMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
  int heightA = transa == false ? dimM : dimK;
  int widthA = transa == false ? dimK : dimM;
  int heightB = transb == false ? dimK : dimN;
  int widthB = transb == false ? dimN : dimK;
  int heightC = dimM;
  int widthC = dimN;

  MatrixPtr cpuA = std::make_shared<CpuMatrix>(heightA, widthA, transa);
  MatrixPtr cpuB = std::make_shared<CpuMatrix>(heightB, widthB, transb);
  MatrixPtr cpuC = std::make_shared<CpuMatrix>(heightC, widthC);
  MatrixPtr gpuA = std::make_shared<GpuMatrix>(heightA, widthA, transa);
  MatrixPtr gpuB = std::make_shared<GpuMatrix>(heightB, widthB, transb);
  MatrixPtr gpuC = std::make_shared<GpuMatrix>(heightC, widthC);

  real alpha = 1.5;
  real beta = 2.0;
  cpuA->randomizeUniform();
  cpuB->randomizeUniform();
  cpuC->randomizeUniform();
  gpuA->copyFrom(*cpuA);
  gpuB->copyFrom(*cpuB);
  gpuC->copyFrom(*cpuC);

  auto subSize = [](int& start, int& end, int dim) {
    if (dim == 1) {
      start = 0;
      end = dim;
    } else {
      int subDim = rand() % (dim - 1) + 1;  // NOLINT
      start = rand() % (dim - subDim);      // NOLINT
      end = start + subDim;
    }
  };

454 455 456 457 458 459
  auto subMatrix = [](MatrixPtr& sub,
                      MatrixPtr matrix,
                      size_t startRow,
                      size_t endRow,
                      size_t startCol,
                      size_t endCol) {
Z
zhangjinchao01 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    if (!matrix->isTransposed()) {
      sub = matrix->subMatrix(startRow, endRow, startCol, endCol);
    } else {
      sub = matrix->subMatrix(startCol, endCol, startRow, endRow);
    }
  };

  int startM, endM;
  int startN, endN;
  int startK, endK;
  subSize(startM, endM, dimM);
  subSize(startN, endN, dimN);
  subSize(startK, endK, dimK);

  MatrixPtr subCpuA;
  MatrixPtr subCpuB;
  MatrixPtr subGpuA;
  MatrixPtr subGpuB;
  subMatrix(subCpuA, cpuA, startM, endM, startK, endK);
  subMatrix(subGpuA, gpuA, startM, endM, startK, endK);
  subMatrix(subCpuB, cpuB, startK, endK, startN, endN);
  subMatrix(subGpuB, gpuB, startK, endK, startN, endN);
  MatrixPtr subCpuC = cpuC->subMatrix(startM, endM, startN, endN);
  MatrixPtr subGpuC = gpuC->subMatrix(startM, endM, startN, endN);

485 486
  subCpuC->mul(*subCpuA, *subCpuB, alpha, beta);
  subGpuC->mul(*subGpuA, *subGpuB, alpha, beta);
Z
zhangjinchao01 已提交
487

488
  TensorCheckErr(*cpuC, *gpuC);
Z
zhangjinchao01 已提交
489 490 491 492 493 494 495 496 497 498 499 500
}

TEST(Matrix, mul) {
  for (auto transa : {false, true}) {
    for (auto transb : {false, true}) {
      for (auto dimM : {1, 9, 53, 127, 345, 1023, 2135}) {
        for (auto dimN : {1, 5, 37, 256, 1024}) {
          for (auto dimK : {8, 45, 346, 784, 1025}) {
            if (true == transa && true == transb) {
              continue;
            }
            VLOG(3) << setiosflags(ios::left) << setfill(' ')
501 502 503
                    << " transa=" << transa << " transb=" << transb
                    << " dimM=" << setw(5) << dimM << " dimN=" << setw(5)
                    << dimN << " dimK=" << setw(5) << dimK;
Z
zhangjinchao01 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

            testMatrixMul(transa, transb, dimM, dimN, dimK);
            testSubMatrixMul(transa, transb, dimM, dimN, dimK);
          }
        }
      }
    }
  }
}

void testVectorRowFunc(int size) {
  CpuVectorPtr cpu = std::make_shared<CpuVectorT<real>>(size);
  GpuVectorPtr gpu = std::make_shared<GpuVectorT<real>>(size);

  cpu->rand();
  gpu->copyFrom(*cpu);

  EXPECT_EQ(cpu->getMax(), gpu->getMax());
  EXPECT_EQ(cpu->getMin(), gpu->getMin());
  EXPECT_EQ(cpu->getAbsMax(), gpu->getAbsMax());
}

TEST(Vector, rowFunc) {
Y
Yi Wang 已提交
527
  for (auto size : {1, 3, 997}) {  // prime numbers close to 1, 4, 1024
Z
zhangjinchao01 已提交
528 529 530 531 532
    VLOG(3) << " size=" << size;
    testVectorRowFunc(size);
  }
}

533
template <class T>
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541
void testVectorReset(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpu->reset(value);
  gpu->reset(value);

542
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
543 544
}

545
template <class T>
Z
zhangjinchao01 已提交
546 547 548
void testVecortSelectFrom(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuDst = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuDst = std::make_shared<GpuVectorT<T>>(size);
549 550 551 552
  std::shared_ptr<CpuVectorT<T>> cpuSrc =
      std::make_shared<CpuVectorT<T>>(size * 2);
  std::shared_ptr<GpuVectorT<T>> gpuSrc =
      std::make_shared<GpuVectorT<T>>(size * 2);
Z
zhangjinchao01 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  CpuIVectorPtr cpuIds = std::make_shared<CpuVectorT<int>>(size);
  GpuIVectorPtr gpuIds = std::make_shared<GpuVectorT<int>>(size);

  if (std::is_same<T, real>::value) {
    cpuSrc->rand();
  } else {
    cpuSrc->rand(100000);
  }
  gpuSrc->copyFrom(*cpuSrc);
  cpuIds->rand(size);
  gpuIds->copyFrom(*cpuIds);

  cpuDst->selectFrom(*cpuSrc, *cpuIds);
  gpuDst->selectFrom(*gpuSrc, *gpuIds);

568
  TensorCheckEqual(*cpuDst, *gpuDst);
Z
zhangjinchao01 已提交
569 570
}

571
template <class T>
Z
zhangjinchao01 已提交
572 573 574 575 576 577 578
void testVecotrZeroMem(int size) {
  std::shared_ptr<CpuVectorT<T>> cpu = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpu = std::make_shared<GpuVectorT<T>>(size);

  cpu->zeroMem();
  gpu->zeroMem();

579
  TensorCheckEqual(*cpu, *gpu);
Z
zhangjinchao01 已提交
580 581
}

582
template <class T>
Z
zhangjinchao01 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
void testVectorIsEqual(int size) {
  std::shared_ptr<CpuVectorT<T>> cpuA = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<CpuVectorT<T>> cpuB = std::make_shared<CpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuA = std::make_shared<GpuVectorT<T>>(size);
  std::shared_ptr<GpuVectorT<T>> gpuB = std::make_shared<GpuVectorT<T>>(size);

  if (std::is_same<T, real>::value) {
    cpuB->rand();
  } else {
    cpuB->rand(100000);
  }
  gpuB->copyFrom(*cpuB);

  T value = (T)((int)rand() % 100 + 1.0f / ((int)rand() % 100));
  cpuA->isEqualTo(*cpuB, value);
  gpuA->isEqualTo(*gpuB, value);

600
  TensorCheckEqual(*cpuA, *gpuA);
Z
zhangjinchao01 已提交
601 602 603
}

TEST(Vector, Equal) {
Y
Yi Wang 已提交
604
  for (auto size : {1, 3, 997}) {  // prime numbers close to 1, 4, 1024
Z
zhangjinchao01 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
    VLOG(3) << " size=" << size;
    testVectorReset<int>(size);
    testVectorReset<real>(size);
    testVecortSelectFrom<int>(size);
    testVecortSelectFrom<real>(size);
    testVecotrZeroMem<int>(size);
    testVecotrZeroMem<real>(size);
    testVectorIsEqual<int>(size);
    testVectorIsEqual<real>(size);
  }
}

void testMatrixTopK(int samples, int dim, int beamSize) {
  MatrixPtr cpuSrc = std::make_shared<CpuMatrix>(samples, dim);
  MatrixPtr gpuSrc = std::make_shared<GpuMatrix>(samples, dim);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

631
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
632 633 634
}

TEST(Matrix, topK) {
Y
Yi Wang 已提交
635 636
  for (auto samples : {1, 17, 131}) {  // prime numbers close to 1, 16, 127
    for (auto dim : {1, 3, 997}) {     // prime numbers close to 1, 4, 1024
Z
zhangjinchao01 已提交
637 638
      for (auto beamSize : {1, 5, 10, 20, 40, (int)rand() % dim + 1}) {
        if (beamSize > dim) continue;
639
        VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
Z
zhangjinchao01 已提交
640 641 642 643 644 645 646 647 648
                << " dim=" << dim;
        testMatrixTopK(samples, dim, beamSize);
      }
    }
  }
}

void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
  int nnz = samples * dim * ratio;
Y
Yi Wang 已提交
649
  if (nnz < 1) nnz = 1;  // Because sparseRand in MathUtil.cpp requires this.
Z
zhangjinchao01 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
  MatrixPtr cpuSrc = std::make_shared<CpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr gpuSrc = std::make_shared<GpuSparseMatrix>(samples, dim, nnz);
  MatrixPtr cpuVal = std::make_shared<CpuMatrix>(samples, beamSize);
  MatrixPtr gpuVal = std::make_shared<GpuMatrix>(samples, beamSize);
  IVectorPtr cpuIds = std::make_shared<CpuIVector>(samples * beamSize);
  IVectorPtr gpuIds = std::make_shared<GpuIVector>(samples * beamSize);

  cpuSrc->randomizeUniform();
  gpuSrc->copyFrom(*cpuSrc);
  cpuVal->zero();
  cpuIds->zero();
  gpuVal->zero();
  gpuIds->zero();

  cpuSrc->rowMax(*cpuIds, *cpuVal);
  gpuSrc->rowMax(*gpuIds, *gpuVal);

667
  TensorCheckEqual(*cpuVal, *gpuVal);
Z
zhangjinchao01 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

  IVectorPtr outCheckIds = std::make_shared<CpuIVector>(samples * beamSize);
  outCheckIds->copyFrom(*gpuIds);

  const int* data1 = cpuIds->getData();
  const int* data2 = outCheckIds->getData();
  size_t size = cpuIds->getSize();
  for (size_t i = 0; i < size; i++) {
    if (data1[i] == -1 && data1[i] != data2[i]) {
      EXPECT_EQ(data1[i], data2[i]);
    }
  }
}

TEST(SMatrix, topK) {
Y
Yi Wang 已提交
683 684 685
  for (auto samples : {1, 3, 61}) {
    for (auto dim : {1, 3, 61}) {
      for (auto beamSize : {1, 3, 61}) {
Z
zhangjinchao01 已提交
686 687
        for (auto ratio : {0.01, 0.001}) {
          if (beamSize > dim) continue;
688 689
          VLOG(3) << " samples=" << samples << " beamSize=" << beamSize
                  << " dim=" << dim << " ratio=" << ratio;
Z
zhangjinchao01 已提交
690 691 692 693 694 695 696
          testSMatrixTopK(samples, dim, beamSize, ratio);
        }
      }
    }
  }
}

L
Luo Tao 已提交
697
void testMatrixSequenceAvg(int batchSize, int inputDim, int mode) {
Z
zhangjinchao01 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  int newBatchSize = cpuSequence->getSize() - 1;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(newBatchSize, inputDim);
  cpuOutput->zero();
  gpuOutput->zero();

  cpuOutput->sequenceAvgForward(*cpuInput, *cpuSequence, mode);
  gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode);

717
  TensorCheckErr(*cpuOutput, *gpuOutput);
L
Luo Tao 已提交
718 719 720 721 722 723 724 725 726 727

  MatrixPtr cpuInGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInGrad->randomizeUniform();
  gpuInGrad->copyFrom(*cpuInGrad);

  cpuInGrad->sequenceAvgBackward(*cpuOutput, *cpuSequence, mode);
  gpuInGrad->sequenceAvgBackward(*gpuOutput, *gpuSequence, mode);

  TensorCheckErr(*cpuInGrad, *gpuInGrad);
Z
zhangjinchao01 已提交
728 729
}

L
Luo Tao 已提交
730
TEST(Matrix, sequenceAvg) {
Z
zhangjinchao01 已提交
731 732 733 734 735
  for (auto batchSize : {10, 128, 6000}) {
    for (auto inputDim : {32, 100, 512}) {
      for (auto mode : {0, 1, 2}) {
        VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim
                << " mode=" << mode;
L
Luo Tao 已提交
736
        testMatrixSequenceAvg(batchSize, inputDim, mode);
Z
zhangjinchao01 已提交
737 738 739 740 741
      }
    }
  }
}

742 743 744 745
void testParamReluBackwardDiff(int height,
                               int width,
                               int w_height,
                               int w_width) {
Z
zhangjinchao01 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
  MatrixPtr oGrad = CpuMatrix::create(height, width, false, false);
  MatrixPtr input = CpuMatrix::create(height, width, false, false);
  MatrixPtr diff = CpuMatrix::create(height, width, false, false);
  MatrixPtr w = CpuMatrix::create(w_height, w_width, false, false);

  oGrad->randomizeUniform();
  input->randomizeUniform();
  w->randomizeUniform();
  diff->randomizeUniform();
  input->add(-0.5);

  MatrixPtr oGradGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr inputGpu = GpuMatrix::create(height, width, false, true);
  MatrixPtr diffGpu = CpuMatrix::create(height, width, false, true);
  MatrixPtr wGpu = GpuMatrix::create(w_height, w_width, false, true);

  oGradGpu->copyFrom(*oGrad);
  inputGpu->copyFrom(*input);
  wGpu->copyFrom(*w);
  diffGpu->copyFrom(*diff);

  diff->paramReluBackwardDiff(*oGrad, *input, *w);
  diffGpu->paramReluBackwardDiff(*oGradGpu, *inputGpu, *wGpu);

770
  TensorCheckErr(*diff, *diffGpu);
Z
zhangjinchao01 已提交
771 772 773
}

TEST(Matrix, paramReluBackwardDiff) {
H
hedaoyuan 已提交
774 775
  for (auto height : {10, 40, 100}) {
    for (auto width : {10, 40, 100}) {
Z
zhangjinchao01 已提交
776 777
      for (auto w_height : {1, 2}) {
        for (auto w_width : {1, 2}) {
H
hedaoyuan 已提交
778
          if (width % (w_height * w_width)) continue;
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785
          testParamReluBackwardDiff(height, width, w_height, w_width);
        }
      }
    }
  }
}

786
void testClassificationError(int numSamples, int dim, int topkSize) {
H
He 已提交
787 788 789 790 791 792 793 794 795 796 797 798
  MatrixPtr cpuError = std::make_shared<CpuMatrix>(numSamples, 1);
  MatrixPtr gpuError = std::make_shared<GpuMatrix>(numSamples, 1);
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, dim);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, dim);
  IVectorPtr cpuLabel = std::make_shared<CpuIVector>(numSamples);
  IVectorPtr gpuLabel = std::make_shared<GpuIVector>(numSamples);

  cpuOutput->randomizeUniform();
  cpuLabel->rand(dim);
  gpuOutput->copyFrom(*cpuOutput);
  gpuLabel->copyFrom(*cpuLabel);

799 800
  cpuError->classificationError(*cpuOutput, *cpuLabel, topkSize);
  gpuError->classificationError(*gpuOutput, *gpuLabel, topkSize);
H
He 已提交
801

802
  TensorCheckEqual(*cpuError, *gpuError);
H
He 已提交
803 804 805
}

TEST(Matrix, classificationError) {
Y
Yi Wang 已提交
806 807 808
  for (auto numSamples : {1, 3, 31}) {
    for (auto dim : {1, 3, 31}) {
      for (auto topkSize : {1, 3, (int)rand() % dim + 1}) {
809 810 811 812 813
        if (topkSize > dim) continue;
        VLOG(3) << " sample= " << numSamples << " topkSize= " << topkSize
                << " dim= " << dim;
        testClassificationError(numSamples, dim, topkSize);
      }
H
He 已提交
814 815 816 817
    }
  }
}

818 819 820 821 822 823 824 825 826 827
void testMaxPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  target->maxPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->maxPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
869 870 871 872 873 874 875
  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
  targetCheck->copyFrom(*targetGpu);
  checkMatrixEqual(target, targetCheck);

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
876 877
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
878 879 880 881 882 883

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
  inputGrad->maxPoolBackward(*input,
                             imgSizeH,
                             imgSizeW,
                             *targetGrad,
                             *target,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->maxPoolBackward(*inputGpu,
                                imgSizeH,
                                imgSizeW,
                                *targetGpuGrad,
                                *targetGpu,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
  MatrixPtr targetBwdCheck =
      CpuMatrix::create(numSamples, inWidth, false, false);
916 917 918 919
  targetBwdCheck->copyFrom(*inputGpuGrad);
  checkMatrixEqual(inputGrad, targetBwdCheck);
}

920 921 922 923 924 925 926 927 928 929
void testAvgPoolFwdBwd(int numSamples,
                       int channels,
                       int imgSizeH,
                       int imgSizeW,
                       int ksizeH,
                       int ksizeW,
                       int strideH,
                       int strideW,
                       int padH,
                       int padW) {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
  int outH = 0, outW = 0;
  outH = (imgSizeH - ksizeH + 2 * padH + strideH - 1) / strideH + 1;
  outW = (imgSizeW - ksizeW + 2 * padW + strideW - 1) / strideW + 1;

  int inWidth = imgSizeH * imgSizeW * channels;
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  int outWidth = channels * outH * outW;
  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  input->randomizeUniform();
  target->randomizeUniform();
  inputGpu->copyFrom(*input);
  targetGpu->copyFrom(*target);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
  target->avgPoolForward(*input,
                         imgSizeH,
                         imgSizeW,
                         channels,
                         ksizeW,
                         ksizeH,
                         strideH,
                         strideW,
                         outH,
                         outW,
                         padH,
                         padW);
  targetGpu->avgPoolForward(*inputGpu,
                            imgSizeH,
                            imgSizeW,
                            channels,
                            ksizeW,
                            ksizeH,
                            strideH,
                            strideW,
                            outH,
                            outW,
                            padH,
                            padW);
971 972

  TensorCheckErr(*target, *targetGpu);
973 974 975 976

  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
977 978
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
979 980 981 982 983 984

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
  inputGrad->avgPoolBackward(*targetGrad,
                             imgSizeH,
                             imgSizeW,
                             ksizeW,
                             ksizeH,
                             strideH,
                             strideW,
                             outH,
                             outW,
                             1.0,
                             1.0,
                             padH,
                             padW);
  inputGpuGrad->avgPoolBackward(*targetGpuGrad,
                                imgSizeH,
                                imgSizeW,
                                ksizeW,
                                ksizeH,
                                strideH,
                                strideW,
                                outH,
                                outW,
                                1.0,
                                1.0,
                                padH,
                                padW);
1011 1012

  TensorCheckErr(*inputGrad, *inputGpuGrad);
1013 1014
}

Y
Yi Wang 已提交
1015 1016
// TODO(yi): I noticed many such blindly combinatorial tests in this
// file.  They are no help to locate defects at all.
1017
TEST(Matrix, PoolFwdBwd) {
Y
Yi Wang 已提交
1018 1019 1020 1021 1022 1023
  for (auto numSamples : {1, 3}) {
    for (auto channels : {1, 3}) {
      for (auto imgSizeH : {13, 17}) {
        for (auto imgSizeW : {17, 19}) {
          for (auto sizeX : {2, 3}) {
            for (auto sizeY : {2, 3}) {
1024 1025
              for (auto sH : {1, 2}) {
                for (auto sW : {1, 2}) {
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                  for (auto pH : {0, (sizeY - 1) / 2}) {
                    for (auto pW : {0, (sizeX - 1) / 2}) {
                      VLOG(3) << " numSamples=" << numSamples
                              << " channels=" << channels
                              << " imgSizeH=" << imgSizeH
                              << " imgSizeW=" << imgSizeW << " sizeX=" << sizeX
                              << " sizeY=" << sizeY << " strideH=" << sH
                              << " strideW=" << sW << " padingH=" << pH
                              << " padingW=" << pW;
                      testMaxPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                      testAvgPoolFwdBwd(numSamples,
                                        channels,
                                        imgSizeH,
                                        imgSizeW,
                                        sizeX,
                                        sizeY,
                                        sH,
                                        sW,
                                        pH,
                                        pW);
                    }
                  }
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
                }
              }
            }
          }
        }
      }
    }
  }
}

1067 1068
void testMaxOutFwdBwd(
    int numSamples, int imgSizeH, int imgSizeW, int channels, int groups) {
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  int inWidth = imgSizeH * imgSizeW * channels;
  int outChannels = channels / groups;
  int outWidth = imgSizeH * imgSizeW * outChannels;

  // forward
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);

  IVectorPtr id = CpuIVector::create(numSamples * outWidth, false);
  IVectorPtr idGpu = GpuIVector::create(numSamples * outWidth, true);

  input->randomizeUniform();
  inputGpu->copyFrom(*input);

  target->maxoutForward(*input, *id, outChannels, groups);
  targetGpu->maxoutForward(*inputGpu, *idGpu, outChannels, groups);

1089 1090
  TensorCheckErr(*target, *targetGpu);
  TensorCheckEqual(*id, *idGpu);
1091 1092 1093 1094 1095 1096

  // backward
  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
1097 1098
  MatrixPtr targetGpuGrad =
      GpuMatrix::create(numSamples, outWidth, false, true);
1099 1100 1101 1102 1103 1104 1105 1106 1107

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

  inputGrad->maxoutBackward(*targetGrad, *id, outChannels, groups);
  inputGpuGrad->maxoutBackward(*targetGpuGrad, *idGpu, outChannels, groups);

1108
  TensorCheckErr(*inputGrad, *inputGpuGrad);
1109 1110 1111 1112 1113 1114 1115 1116
}

TEST(Matrix, MaxOutFwdBwd) {
  for (auto numSamples : {5, 10}) {
    for (auto channels : {8, 16}) {
      for (auto imgSizeH : {14, 28}) {
        for (auto imgSizeW : {16, 30}) {
          for (auto groups : {2, 4}) {
1117 1118
            VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
                    << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW
1119 1120 1121 1122 1123 1124 1125 1126 1127
                    << " groups=" << groups;
            testMaxOutFwdBwd(numSamples, imgSizeH, imgSizeW, channels, groups);
          }
        }
      }
    }
  }
}

1128
TEST(CpuMatrix, copyFrom) {
Y
Yi Wang 已提交
1129 1130
  const size_t height = 31;
  const size_t width = 53;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
  CpuMatrix cpu(height, width);
  GpuMatrix gpu(height, width);
  CpuMatrix copy(height, width);

  cpu.randomizeUniform();
  gpu.copyFrom(cpu);
  copy.copyFrom(gpu, HPPL_STREAM_DEFAULT);

  TensorCheckEqual(cpu, copy);
}

D
dangqingqing 已提交
1142 1143 1144 1145 1146 1147 1148 1149
void testBatch2seqPadding(int batchSize, int inputDim) {
  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
  cpuInput->randomizeUniform();
  gpuInput->copyFrom(*cpuInput);

  IVectorPtr cpuSequence;
  generateSequenceStartPositions(batchSize, cpuSequence);
1150
  for (int i = 0; i < int(cpuSequence->getSize()); ++i) {
Y
Yi Wang 已提交
1151 1152 1153
    (cpuSequence->getData())[i] += 1;  // so no way that maxSeqLen is 0;
  }

D
dangqingqing 已提交
1154 1155 1156 1157
  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
  gpuSequence->copyFrom(*cpuSequence);

  size_t numSeq = cpuSequence->getSize() - 1;
D
dangqingqing 已提交
1158 1159
  size_t maxSeqLen = *std::max_element(cpuSequence->getData(),
                                       cpuSequence->getData() + numSeq);
D
dangqingqing 已提交
1160

Y
Yi Wang 已提交
1161
  printf("numSeq = %ld, maxSeqLen = %ld\n", numSeq, maxSeqLen);
D
dangqingqing 已提交
1162 1163 1164 1165
  MatrixPtr cBatch = std::make_shared<CpuMatrix>(numSeq * maxSeqLen, inputDim);
  MatrixPtr gBatch = std::make_shared<GpuMatrix>(numSeq * maxSeqLen, inputDim);
  MatrixPtr cCheck = std::make_shared<CpuMatrix>(numSeq * maxSeqLen, inputDim);

Y
Yi Wang 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  // hl_sequence2batch_copy_padding(gBatch->getData(),
  //                                gpuInput->getData(),
  //                                cpuSequence->getData(),
  //                                inputDim,
  //                                maxSeqLen,
  //                                numSeq,
  //                                false,
  //                                true);
  // cCheck->copyFrom(*gBatch);

  // int* seqStart = cpuSequence->getData();
  // float* batchData = cBatch->getData();
  // float* seqData = cpuInput->getData();
  // for (size_t i = 0; i < maxSeqLen; i++) {
  //   for (size_t j = 0; j < numSeq; j++) {
  //     size_t sequenceStart = seqStart[j];
  //     size_t sequenceLength = seqStart[j + 1] - seqStart[j];
  //     if (i < sequenceLength) {
  //       memcpy(batchData + (i * numSeq + j) * inputDim,
  //              seqData + (sequenceStart + i) * inputDim,
  //              inputDim * sizeof(real));
  //     } else {
  //       memset(batchData + (i * numSeq + j) * inputDim,
  //              0,
  //              inputDim * sizeof(real));
  //     }
  //   }
  // }

  // TensorCheckErr(*cBatch, *cCheck);
D
dangqingqing 已提交
1196 1197 1198
}

TEST(Matrix, warpCTC) {
Y
Yi Wang 已提交
1199 1200
  for (auto batchSize : {1, 3, 17}) {
    for (auto inputDim : {1, 3, 31}) {
D
dangqingqing 已提交
1201 1202
      VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim;
      testBatch2seqPadding(batchSize, inputDim);
D
dangqingqing 已提交
1203 1204 1205 1206
    }
  }
}

C
chengduoZH 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
/////
void testMatrixPool3D(int depth, int height, int width) {
  int channel = 3;
  int filterX = 3, filterY = 4, filterZ = 5;
  int strideX = 2, strideY = 2, strideZ = 2;
  int padX = 1, padY = 1, padZ = 1;

  MatrixPtr cpuImage =
      std::make_shared<CpuMatrix>(1, channel * depth * height * width);
  MatrixPtr gpuImage =
      std::make_shared<GpuMatrix>(1, channel * depth * height * width);

  int outD = outputSize(depth, filterZ, padZ, strideZ, true);
  int outH = outputSize(height, filterY, padZ, strideY, true);
  int outW = outputSize(width, filterX, padZ, strideX, true);

  int colBufWidth = outD * outH * outW;
  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(1, channel * colBufWidth);
  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(1, channel * colBufWidth);

  cpuImage->randomizeUniform();
  gpuImage->copyFrom(*cpuImage);
  // std::cout << "test maxPool3DForward...\n";
  cpuOutput->maxPool3DForward(*cpuImage,
                              depth,
                              height,
                              width,
                              channel,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              padZ,
                              padY,
                              padX);
  gpuOutput->maxPool3DForward(*gpuImage,
                              depth,
                              height,
                              width,
                              channel,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              padZ,
                              padY,
                              padX);
  TensorCheckErr(*cpuOutput, *gpuOutput);

  cpuImage->randomizeUniform();
  gpuImage->copyFrom(*cpuImage);
  // std::cout << "test avgPool3DForward...\n";
  cpuOutput->avgPool3DForward(*cpuImage,
                              depth,
                              height,
                              width,
                              channel,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              padZ,
                              padY,
                              padX);

  gpuOutput->avgPool3DForward(*gpuImage,
                              depth,
                              height,
                              width,
                              channel,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              padZ,
                              padY,
                              padX);
  TensorCheckErr(*cpuOutput, *gpuOutput);
  cpuImage->randomizeUniform();
  gpuImage->copyFrom(*cpuImage);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);
  // std::cout << "test avgPool3DBackward...\n";
  cpuImage->avgPool3DBackward(*cpuOutput,
                              depth,
                              height,
                              width,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              1,
                              1,
                              padZ,
                              padY,
                              padX);

  gpuImage->avgPool3DBackward(*gpuOutput,
                              depth,
                              height,
                              width,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              1,
                              1,
                              padZ,
                              padY,
                              padX);
  TensorCheckErr(*cpuImage, *gpuImage);

  cpuImage->randomizeUniform();
  gpuImage->copyFrom(*cpuImage);
  cpuOutput->randomizeUniform();
  gpuOutput->copyFrom(*cpuOutput);
  // std::cout << "test maxPool3DBackward...\n";
  cpuImage->maxPool3DBackward(*cpuImage,
                              depth,
                              height,
                              width,
                              *cpuOutput,
                              *cpuOutput,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              1,
                              1,
                              padZ,
                              padY,
                              padX);

  gpuImage->maxPool3DBackward(*gpuImage,
                              depth,
                              height,
                              width,
                              *gpuOutput,
                              *gpuOutput,
                              filterZ,
                              filterY,
                              filterX,
                              strideZ,
                              strideY,
                              strideX,
                              outD,
                              outH,
                              outW,
                              1,
                              1,
                              padZ,
                              padY,
                              padX);
  TensorCheckErr(*cpuImage, *gpuImage);
}

TEST(Matrix, Pool3D) {
  for (auto depth : {9, 16, 64, 128}) {
    for (auto height : {9, 11, 128, 256}) {
      for (auto width : {9, 32, 128}) {
        VLOG(3) << "depth=" << depth << " height=" << height
                << " width=" << width;
        testMatrixPool3D(depth, height, width);
      }
    }
  }
}

Z
zhangjinchao01 已提交
1410
#endif