swig_py_paddle_en.html 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Python Prediction &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a>Home</a></li>
          <li><a>Get Started</a></li>
          <li class="active"><a>Documentation</a></li>
          <li><a>About Us</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index_en.html">TUTORIALS</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../about/index_en.html">ABOUT</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/basic_usage/index_en.html">Simple Linear Regression</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../tutorials/index_en.html">TUTORIALS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/quick_start/index_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/rec/ml_regression_en.html">MovieLens Regression</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/image_classification/index_en.html">Image Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/sentiment_analysis/index_en.html">Sentiment Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/semantic_role_labeling/index_en.html">Semantic Role Labeling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/text_generation/index_en.html">Text Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/gan/index_en.html">Image Auto-Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/imagenet_model/resnet_model_en.html">ImageNet: ResNet</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../tutorials/embedding_model/index_en.html">Embedding: Chinese Word</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../index_en.html">API</a><ul>
155 156 157
<li class="toctree-l2"><a class="reference internal" href="../../v2/model_configs.html">Configuration Related API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/data.html">Data Related API</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../v2/run_logic.html">Trainer API</a></li>
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../about/index_en.html">ABOUT</a></li>
</ul>

        
    </nav>
    
    <nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Python Prediction</a></li>
</ul>
</nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Python Prediction</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="python-prediction">
<h1>Python Prediction<a class="headerlink" href="#python-prediction" title="Permalink to this headline"></a></h1>
<p>PaddlePaddle offers a set of clean prediction interfaces for python with the help of
SWIG. The main steps of predict values in python are:</p>
<ul class="simple">
<li>Parse training configurations</li>
<li>Construct GradientMachine</li>
<li>Prepare data</li>
<li>Predict</li>
</ul>
<p>Here is a sample python script that shows the typical prediction process for the
MNIST classification problem. A complete sample code could be found at
<code class="code docutils literal"><span class="pre">src_root/doc/ui/predict/predict_sample.py</span></code>.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">py_paddle</span> <span class="kn">import</span> <span class="n">swig_paddle</span><span class="p">,</span> <span class="n">DataProviderConverter</span>
<span class="kn">from</span> <span class="nn">paddle.trainer.PyDataProvider2</span> <span class="kn">import</span> <span class="n">dense_vector</span>
<span class="kn">from</span> <span class="nn">paddle.trainer.config_parser</span> <span class="kn">import</span> <span class="n">parse_config</span>

    <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.552941</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.211765</span><span class="p">,</span>
    <span class="mf">0.878431</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.701961</span><span class="p">,</span> <span class="mf">0.329412</span><span class="p">,</span> <span class="mf">0.109804</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.698039</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.913725</span><span class="p">,</span> <span class="mf">0.145098</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mf">0.188235</span><span class="p">,</span> <span class="mf">0.890196</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.745098</span><span class="p">,</span> <span class="mf">0.047059</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.882353</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.568627</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span>
    <span class="mf">0.933333</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.447059</span><span class="p">,</span> <span class="mf">0.294118</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.447059</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.768627</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mf">0.623529</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.47451</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.188235</span><span class="p">,</span> <span class="mf">0.933333</span><span class="p">,</span> <span class="mf">0.87451</span><span class="p">,</span> <span class="mf">0.509804</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.937255</span><span class="p">,</span> <span class="mf">0.792157</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.894118</span><span class="p">,</span>
    <span class="mf">0.082353</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.027451</span><span class="p">,</span> <span class="mf">0.647059</span><span class="p">,</span> <span class="mf">0.992157</span><span class="p">,</span> <span class="mf">0.654902</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
    <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.623529</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.913725</span><span class="p">,</span> <span class="mf">0.329412</span><span class="p">,</span> <span class="mf">0.376471</span><span class="p">,</span>
    <span class="mf">0.184314</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.027451</span><span class="p">,</span> <span class="mf">0.513725</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.635294</span><span class="p">,</span>
    <span class="mf">0.219608</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.196078</span><span class="p">,</span> <span class="mf">0.929412</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span>
    <span class="mf">0.988235</span><span class="p">,</span> <span class="mf">0.741176</span><span class="p">,</span> <span class="mf">0.309804</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mf">0.529412</span><span class="p">,</span> <span class="mf">0.988235</span><span class="p">,</span>
</pre></div>
</div>
<p>The module that does the most of the job is py_paddle.swig_paddle, it&#8217;s
generated by SWIG and has complete documents, for more details you can use
python&#8217;s <code class="code docutils literal"><span class="pre">help()</span></code> function. Let&#8217;s walk through the above python script:</p>
<ul class="simple">
<li>At the beginning, use <code class="code docutils literal"><span class="pre">swig_paddle.initPaddle()</span></code> to initialize
PaddlePaddle with command line arguments, for more about command line arguments
see <a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_en.html#cmd-detail-introduction"><span class="std std-ref">Detail Description</span></a> .</li>
<li>Parse the configuration file that is used in training with <code class="code docutils literal"><span class="pre">parse_config()</span></code>.
Because data to predict with always have no label, and output of prediction work
normally is the output layer rather than the cost layer, so you should modify
the configuration file accordingly before using it in the prediction work.</li>
<li>Create a neural network with
<code class="code docutils literal"><span class="pre">swig_paddle.GradientMachine.createFromConfigproto()</span></code>, which takes the
parsed configuration <code class="code docutils literal"><span class="pre">conf.model_config</span></code> as argument. Then load the
trained parameters from the model with <code class="code docutils literal"><span class="pre">network.loadParameters()</span></code>.</li>
<li><dl class="first docutils">
<dt>Create a data converter object of utility class <code class="code docutils literal"><span class="pre">DataProviderConverter</span></code>.</dt>
<dd><ul class="first last">
<li>Note: As swig_paddle can only accept C++ matrices, we offer a utility
class DataProviderConverter that can accept the same input data with
PyDataProvider2, for more information please refer to document
of <a class="reference internal" href="../data_provider/pydataprovider2_en.html#api-pydataprovider2"><span class="std std-ref">PyDataProvider2</span></a> .</li>
</ul>
</dd>
</dl>
</li>
<li>Do the prediction with <code class="code docutils literal"><span class="pre">forwardTest()</span></code>, which takes the converted
input data and outputs the activations of the output layer.</li>
</ul>
<p>Here is a typical output:</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>[{&#39;id&#39;: None, &#39;value&#39;: array([[  5.53018653e-09,   1.12194102e-05,   1.96644767e-09,
      1.43630644e-02,   1.51111044e-13,   9.85625684e-01,
      2.08823112e-10,   2.32777140e-08,   2.00186201e-09,
      1.15501715e-08],
   [  9.99982715e-01,   1.27787406e-10,   1.72296313e-05,
      1.49316648e-09,   1.36540484e-11,   6.93137714e-10,
      2.70634608e-08,   3.48565123e-08,   5.25639710e-09,
      4.48684503e-08]], dtype=float32)}]
</pre></div>
</div>
<p><code class="code docutils literal"><span class="pre">value</span></code> is the output of the output layer, each row represents result of
the corresponding row in the input data, each element represents activation of
the corresponding neuron in the output layer.</p>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>