batch_norm_op.cu 17.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <algorithm>
Q
Qiao Longfei 已提交
16
#include <cfloat>
17 18 19
#include <string>
#include <vector>
#include "cub/cub.cuh"
S
Siddharth Goyal 已提交
20
#include "paddle/fluid/framework/data_layout.h"
21
#include "paddle/fluid/operators/batch_norm_op.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
24
#include "paddle/fluid/platform/float16.h"
Q
Qiao Longfei 已提交
25

W
Wu Yi 已提交
26 27 28 29 30 31 32 33 34 35
// CUDNN_BATCHNORM_SPATIAL_PERSISTENT in batchnorm. This mode can be faster in
// some tasks because an optimized path may be selected for CUDNN_DATA_FLOAT
// and CUDNN_DATA_HALF data types, compute capability 6.0 or higher. The
// reason we set it to false by default is that this mode may use scaled
// atomic integer reduction that may cause a numerical overflow for certain
// input data range.
DEFINE_bool(cudnn_batchnorm_spatial_persistent, false,
            "Whether enable CUDNN_BATCHNORM_SPATIAL_PERSISTENT mode for cudnn "
            "batch_norm, defalut is False.");

Q
Qiao Longfei 已提交
36 37 38 39
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
40
using DataLayout = framework::DataLayout;
Q
Qiao Longfei 已提交
41 42
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
K
Kexin Zhao 已提交
43
template <typename T>
K
update  
Kexin Zhao 已提交
44
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;
Q
Qiao Longfei 已提交
45 46

template <typename T>
Q
QI JUN 已提交
47 48
class BatchNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
Q
Qiao Longfei 已提交
49 50 51
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
52
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
53 54 55
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");
56
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");
Q
QI JUN 已提交
57 58 59
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
60 61 62 63 64

    // Get the size for each dimension.
    // NCHW [batch_size, in_channels, in_height, in_width]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
65 66
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
67
    int N, C, H, W, D;
Q
QI JUN 已提交
68
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
69

70 71 72
    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

Q
Qiao Longfei 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_;

    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
88
#if CUDNN_VERSION_MIN(7, 0, 0)
W
Wu Yi 已提交
89 90 91 92 93
    if (FLAGS_cudnn_batchnorm_spatial_persistent) {
      mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
    } else {
      mode_ = CUDNN_BATCHNORM_SPATIAL;
    }
94
#else
Q
Qiao Longfei 已提交
95
    mode_ = CUDNN_BATCHNORM_SPATIAL;
96
#endif
Q
Qiao Longfei 已提交
97

M
minqiyang 已提交
98
    VLOG(3) << "Setting descriptors.";
Q
Qiao Longfei 已提交
99 100
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
101
    if (data_layout == DataLayout::kNCHW) {
Q
Qiao Longfei 已提交
102 103 104 105 106 107 108 109 110
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * D * C, 1, W * D * C, D * C, C};
    }
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
K
Kexin Zhao 已提交
111
    // Note: PERSISTENT not implemented for inference
Q
Qiao Longfei 已提交
112
    CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
K
Kexin Zhao 已提交
113
        bn_param_desc_, data_desc_, is_test ? CUDNN_BATCHNORM_SPATIAL : mode_));
Q
Qiao Longfei 已提交
114 115 116 117

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

Q
QI JUN 已提交
118
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
Qiao Longfei 已提交
119

Q
QI JUN 已提交
120
    auto handle = dev_ctx.cudnn_handle();
Q
Qiao Longfei 已提交
121 122

    // Now, depending on whether we are running test or not, we have two paths.
123
    if (is_test || use_global_stats) {
Q
Qiao Longfei 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      // only when test we use input to do computation.
      const auto *est_mean = ctx.Input<Tensor>("Mean");
      const auto *est_var = ctx.Input<Tensor>("Variance");
      // Run inference mode.
      PADDLE_ENFORCE_EQ(est_mean->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_var->dims().size(), 1UL);
      PADDLE_ENFORCE_EQ(est_mean->dims()[0], C);
      PADDLE_ENFORCE_EQ(est_var->dims()[0], C);

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardInference(
          handle,
          // Note: PERSISTENT not implemented for inference
          CUDNN_BATCHNORM_SPATIAL, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, y->template mutable_data<T>(ctx.GetPlace()),
K
update  
Kexin Zhao 已提交
139 140 141 142
          bn_param_desc_, scale->template data<BatchNormParamType<T>>(),
          bias->template data<BatchNormParamType<T>>(),
          est_mean->template data<BatchNormParamType<T>>(),
          est_var->template data<BatchNormParamType<T>>(), epsilon));
Q
Qiao Longfei 已提交
143 144 145 146
    } else {
      // Run training mode.
      // obtain running mean and running inv var, and see if we need to
      // initialize them.
D
Dang Qingqing 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

      auto *mean_out = ctx.Output<Tensor>("MeanOut");
      auto *variance_out = ctx.Output<Tensor>("VarianceOut");
      mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

      auto *saved_mean = ctx.Output<Tensor>("SavedMean");
      auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
      saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, saved_mean, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, saved_variance, static_cast<BatchNormParamType<T>>(0));

162 163 164
      if ((N * H * W * D) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
165
        framework::TensorCopy(*x, ctx.GetPlace(), y);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      } else {
        double this_factor = 1. - momentum;

        CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationForwardTraining(
            handle, mode_, CudnnDataType<T>::kOne(), CudnnDataType<T>::kZero(),
            data_desc_, x->template data<T>(), data_desc_,
            y->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), this_factor,
            mean_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            variance_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
                         ctx.GetPlace()),
            saved_variance->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace())));
      }
Q
Qiao Longfei 已提交
184 185 186 187 188 189 190 191 192
    }

    // clean when exit.
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
  }
};

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
template <typename T, int BlockDim, framework::DataLayout layout>
static __global__ void KeBNBackwardScaleBias(
    const T *dy, const T *x, const BatchNormParamType<T> *mean,
    const BatchNormParamType<T> *variance, const double epsilon, const int N,
    const int C, const int HxW, BatchNormParamType<T> *dscale,
    BatchNormParamType<T> *dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
  typedef cub::BlockReduce<BatchNormParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    BatchNormParamType<T> ds_sum = static_cast<BatchNormParamType<T>>(0);
    BatchNormParamType<T> db_sum = static_cast<BatchNormParamType<T>>(0);

    BatchNormParamType<T> inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    BatchNormParamType<T> mean_i = mean[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += static_cast<BatchNormParamType<T>>(dy[index]) *
                (static_cast<BatchNormParamType<T>>(x[index]) - mean_i);
      db_sum += static_cast<BatchNormParamType<T>>(dy[index]);
    }
    ds_sum = BlockReduce(ds_storage).Reduce(ds_sum, cub::Sum());
    db_sum = BlockReduce(db_storage).Reduce(db_sum, cub::Sum());
    if (threadIdx.x == 0) {
      dscale[i] = ds_sum * inv_var_i;
      dbias[i] = db_sum;
    }
    __syncthreads();
  }
}

Q
qingqing01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
template <typename T, framework::DataLayout layout>
static __global__ void KeBNBackwardData(const T *dy,
                                        const BatchNormParamType<T> *scale,
                                        const BatchNormParamType<T> *variance,
                                        const double epsilon, const int C,
                                        const int HxW, const int num, T *dx) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    BatchNormParamType<T> inv_var = 1.0 / sqrt(variance[c] + epsilon);
    dx[i] = static_cast<T>(static_cast<BatchNormParamType<T>>(dy[i]) *
                           scale[c] * inv_var);
  }
}

Q
Qiao Longfei 已提交
245
template <typename T>
Q
QI JUN 已提交
246
class BatchNormGradKernel<platform::CUDADeviceContext, T>
Q
Qiao Longfei 已提交
247 248 249 250
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
251
                   "It must use CUDAPlace.");
Q
Qiao Longfei 已提交
252
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
Q
QI JUN 已提交
253
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
254 255
    const bool use_global_stats = ctx.Attr<bool>("use_global_stats");

Q
QI JUN 已提交
256 257
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
Q
Qiao Longfei 已提交
258 259 260 261 262 263
    const auto *x = ctx.Input<Tensor>("X");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");

    const auto &x_dims = x->dims();

264 265
    PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
                   "The Input dim size should be between 2 and 5");
Q
Qiao Longfei 已提交
266
    int N, C, H, W, D;
Q
QI JUN 已提交
267
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);
Q
Qiao Longfei 已提交
268

269 270 271 272 273 274
    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
275 276 277
    if (d_scale && d_bias) {
      d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
      d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
278
    }
Q
Qiao Longfei 已提交
279 280 281
    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL);
    PADDLE_ENFORCE_EQ(scale->dims()[0], C);

Z
zchen0211 已提交
282 283
    std::vector<int> dims;
    std::vector<int> strides;
Q
QI JUN 已提交
284
    if (data_layout == DataLayout::kNCHW) {
Z
zchen0211 已提交
285 286 287 288 289 290
      dims = {N, C, H, W, D};
      strides = {C * H * W * D, H * W * D, W * D, D, 1};
    } else {
      dims = {N, C, H, W, D};
      strides = {H * W * C * D, 1, W * D * C, D * C, C};
    }
Q
Qiao Longfei 已提交
291

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if (!use_global_stats) {
      if ((N * H * W * D) == 1) {
        framework::TensorCopy(*d_y, ctx.GetPlace(), d_x);
        math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
            functor;
        functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
        functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
        return;
      }

      // ------------------- cudnn descriptors ---------------------
      cudnnTensorDescriptor_t data_desc_;
      cudnnTensorDescriptor_t bn_param_desc_;
      cudnnBatchNormMode_t mode_;

      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
      if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
        LOG(ERROR) << "Provided epsilon is smaller than "
                   << "CUDNN_BN_MIN_EPSILON. Setting it to "
                   << "CUDNN_BN_MIN_EPSILON instead.";
      }
      epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);
318
#if CUDNN_VERSION_MIN(7, 0, 0)
W
Wu Yi 已提交
319 320 321 322 323
      if (FLAGS_cudnn_batchnorm_spatial_persistent) {
        mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
      } else {
        mode_ = CUDNN_BATCHNORM_SPATIAL;
      }
324
#else
325
      mode_ = CUDNN_BATCHNORM_SPATIAL;
326
#endif
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          data_desc_, CudnnDataType<T>::type,
          x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
      CUDNN_ENFORCE(platform::dynload::cudnnDeriveBNTensorDescriptor(
          bn_param_desc_, data_desc_, mode_));

      const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
      const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
      const void *saved_mean_data =
          saved_mean->template data<BatchNormParamType<T>>();
      const void *saved_var_data =
          saved_var->template data<BatchNormParamType<T>>();

      CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward(
          dev_ctx.cudnn_handle(), mode_, CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), CudnnDataType<T>::kOne(),
          CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
          data_desc_, d_y->template data<T>(), data_desc_,
          d_x->template mutable_data<T>(ctx.GetPlace()), bn_param_desc_,
          scale->template data<BatchNormParamType<T>>(),
          d_scale->template mutable_data<BatchNormParamType<T>>(ctx.GetPlace()),
          d_bias->template mutable_data<BatchNormParamType<T>>(ctx.GetPlace()),
          epsilon, saved_mean_data, saved_var_data));

      // clean when exit.
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
    } else {
      const auto *running_mean = ctx.Input<Tensor>("Mean");
      const auto *running_var = ctx.Input<Tensor>("Variance");

      const auto *running_mean_data =
          running_mean->template data<BatchNormParamType<T>>();
      const auto *running_var_data =
          running_var->template data<BatchNormParamType<T>>();

      const int num = x->numel();
      const int block = 512;
      int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
      const int max_blocks = std::max(max_threads / block, 1);
      int grid1 = (num + block - 1) / block;
      int grid2 = std::min(C, max_blocks);

      if (data_layout == framework::DataLayout::kNCHW) {
        if (d_x) {
          KeBNBackwardData<T, framework::DataLayout::kNCHW><<<
              grid1, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
          KeBNBackwardScaleBias<T, block, framework::DataLayout::kNCHW><<<
              grid2, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
384
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
385 386 387 388 389 390 391 392 393 394
              d_bias->data<BatchNormParamType<T>>());
        }
      } else {
        if (d_x) {
          KeBNBackwardData<T, framework::DataLayout::kNHWC><<<
              grid1, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), scale->data<BatchNormParamType<T>>(),
              running_var_data, epsilon, C, H * W, num, d_x->data<T>());
        }
        if (d_scale && d_bias) {
Q
qingqing01 已提交
395
          KeBNBackwardScaleBias<T, block, framework::DataLayout::kNHWC><<<
396 397
              grid2, block, 0, dev_ctx.stream()>>>(
              d_y->data<T>(), x->data<T>(), running_mean_data, running_var_data,
Q
qingqing01 已提交
398
              epsilon, N, C, H * W * D, d_scale->data<BatchNormParamType<T>>(),
399 400 401 402
              d_bias->data<BatchNormParamType<T>>());
        }
      }
    }
Q
Qiao Longfei 已提交
403 404 405 406 407 408 409
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
410
namespace plat = paddle::platform;
Q
QI JUN 已提交
411
REGISTER_OP_CUDA_KERNEL(
K
Kexin Zhao 已提交
412
    batch_norm, ops::BatchNormKernel<plat::CUDADeviceContext, float>,
D
dzhwinter 已提交
413
    ops::BatchNormKernel<plat::CUDADeviceContext, double>,
K
Kexin Zhao 已提交
414
    ops::BatchNormKernel<plat::CUDADeviceContext, plat::float16>);
Q
QI JUN 已提交
415
REGISTER_OP_CUDA_KERNEL(
D
dzhwinter 已提交
416
    batch_norm_grad, ops::BatchNormGradKernel<plat::CUDADeviceContext, float>,
C
chengduo 已提交
417 418
    ops::BatchNormGradKernel<plat::CUDADeviceContext, double>,
    ops::BatchNormGradKernel<plat::CUDADeviceContext, plat::float16>);