momentum_op.h 2.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
S
sidgoyal78 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
S
sidgoyal78 已提交
18 19 20 21

namespace paddle {
namespace operators {

22
template <typename T>
S
sidgoyal78 已提交
23 24 25
class MomentumOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
26 27 28 29 30 31
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());

S
sidgoyal78 已提交
32 33 34 35 36 37
    auto param_out = ctx.Output<framework::Tensor>("ParamOut");
    auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
    auto param = ctx.Input<framework::Tensor>("Param");
    auto velocity = ctx.Input<framework::Tensor>("Velocity");
    auto grad = ctx.Input<framework::Tensor>("Grad");
    auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
S
sidgoyal78 已提交
38 39 40 41

    param_out->mutable_data<T>(ctx.GetPlace());
    velocity_out->mutable_data<T>(ctx.GetPlace());

42
    T mu = static_cast<T>(ctx.Attr<float>("mu"));
43
    bool use_nesterov = ctx.Attr<bool>("use_nesterov");
S
sidgoyal78 已提交
44

S
sidgoyal78 已提交
45 46 47 48 49 50
    auto p_out = framework::EigenVector<T>::Flatten(*param_out);
    auto v_out = framework::EigenVector<T>::Flatten(*velocity_out);

    auto p = framework::EigenVector<T>::Flatten(*param);
    auto v = framework::EigenVector<T>::Flatten(*velocity);
    auto g = framework::EigenVector<T>::Flatten(*grad);
51
    auto* lr = learning_rate->data<T>();
S
sidgoyal78 已提交
52

53
    v_out = v * mu + g;
K
kavyasrinet 已提交
54
    if (use_nesterov) {
55
      p_out = p - (g + v_out * mu) * lr[0];
K
kavyasrinet 已提交
56
    } else {
57
      p_out = p - lr[0] * v_out;
K
kavyasrinet 已提交
58
    }
S
sidgoyal78 已提交
59 60 61 62 63
  }
};

}  // namespace operators
}  // namespace paddle