gaussian_random_op.cu 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
Q
qijun 已提交
16 17
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
22
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
31
  unsigned int offset_ = 0;
Q
qijun 已提交
32 33 34 35

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
36 37 38
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
39 40 41
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
42 43
    using MT = typename details::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(mean_, std_);
Y
yaoxuefeng 已提交
44 45
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
46 47
    MT out = dist(rng);
    return static_cast<T>(out);
Q
qijun 已提交
48 49 50 51
  }
};

template <typename T>
Y
Yu Yang 已提交
52
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
53 54 55
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
56
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
57
    bool seed_flag = false;
Q
qijun 已提交
58 59 60
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
61
      seed_flag = true;
Q
qijun 已提交
62
    }
Y
Yu Yang 已提交
63 64
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Y
Yang 已提交
65
    thrust::counting_iterator<int64_t> index_sequence_begin(0);
66
    auto shape = GetShape(context);
67 68 69
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

70
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
71 72 73 74 75 76 77

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
78
      int64_t gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
79 80 81 82 83 84 85 86 87
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
88 89 90
  }
};

91 92 93 94 95 96 97
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
98
    bool seed_flag = false;
99 100 101
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
102
      seed_flag = true;
103 104 105
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Y
Yang 已提交
106
    thrust::counting_iterator<int64_t> index_sequence_begin(0);
107
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
108 109 110 111 112 113 114

    int device_id =
        BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
115
      int64_t gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
116 117 118 119 120 121 122 123 124
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
125 126
  }
};
Q
qijun 已提交
127 128
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
129

130 131 132 133 134
REGISTER_OP_CUDA_KERNEL(
    gaussian_random,
    paddle::operators::GPUGaussianRandomKernel<paddle::platform::float16>,
    paddle::operators::GPUGaussianRandomKernel<float>,
    paddle::operators::GPUGaussianRandomKernel<double>);
135 136
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
137 138
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>,
139 140
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);