io.py 49.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
bug fix  
tangwei12 已提交
16
import errno
T
tangwei12 已提交
17 18
import time
import shutil
19

20 21
from paddle.fluid.evaluator import Evaluator
from paddle.fluid.framework import Program, Parameter, default_main_program, Variable
K
fix bug  
Kexin Zhao 已提交
22
from . import core
23 24

__all__ = [
T
tangwei12 已提交
25 26
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
27
    'get_inference_program', 'save_checkpoint', 'load_checkpoint',
28
    'clean_checkpoint', 'load_persist_vars_without_grad',
29 30
    'load_lookup_table_vars', 'save_persist_vars_without_grad',
    'get_latest_checkpoint_serial'
31 32 33 34
]


def is_parameter(var):
F
fengjiayi 已提交
35 36
    """
    Check whether the given variable is an instance of Parameter.
37 38

    Args:
F
fengjiayi 已提交
39
        var(Variable): The variable to be checked.
40 41

    Returns:
F
fengjiayi 已提交
42 43 44 45 46 47 48 49
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
50
    """
51 52 53 54
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
71
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
Refine  
Yu Yang 已提交
72
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST:
73
        return False
74 75 76 77 78 79 80 81
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
82
        dtype=var.dtype,
83 84 85 86 87
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


88 89 90 91 92
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
93
              filename=None):
94
    """
F
fengjiayi 已提交
95 96 97 98 99 100 101
    Save variables to the given directory by executor.

    There are two ways to specify variables to be saved: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be saved. The first way has a higher priority. In other words, if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.
102

F
fengjiayi 已提交
103 104 105 106
    The `dirname` are used to specify the folder where to save variables. 
    If you prefer to save variables in separate files in the folder `dirname`, 
    set `filename` None; if you prefer to save all variables in a single file, 
    use `filename` to specify it.
107

F
fengjiayi 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be saved. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to save. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be saved. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which to save all variables. If you prefer to save 
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
158 159
    """
    if vars is None:
160
        if main_program is None:
Y
Yu Yang 已提交
161
            main_program = default_main_program()
162
        if not isinstance(main_program, Program):
163 164 165 166 167
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
168
            vars=filter(predicate, main_program.list_vars()),
169
            filename=filename)
170 171 172
    else:
        save_program = Program()
        save_block = save_program.global_block()
173 174

        save_var_map = {}
175
        for each_var in vars:
176 177 178
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
179
            new_var = _clone_var_in_block_(save_block, each_var)
180
            if filename is None:
181 182 183 184 185 186 187 188
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

189
        if filename is not None:
190 191 192 193
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

194
            save_block.append_op(
195 196
                type='save_combine',
                inputs={'X': save_var_list},
197
                outputs={},
198
                attrs={'file_path': os.path.join(dirname, filename)})
199

200 201 202
        executor.run(save_program)


203
def save_params(executor, dirname, main_program=None, filename=None):
204
    """
F
fengjiayi 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

    Use the `dirname` to specify the saving folder. If you would like to 
    save parameters in separate files, set `filename` None; if you would 
    like to save all parameters in a single file, use `filename` to specify 
    the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file to save all parameters. If you prefer 
                            to save parameters in differnet files, set it 
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_params(executor=exe, dirname=param_path, 
                                 main_program=None)
241 242 243 244
    """
    save_vars(
        executor,
        dirname=dirname,
245
        main_program=main_program,
246
        vars=None,
247
        predicate=is_parameter,
248
        filename=filename)
249 250


251
def save_persistables(executor, dirname, main_program=None, filename=None):
252
    """
F
fengjiayi 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then saves these variables to the folder `dirname` 
    or file `filename`.

    The `dirname` is used to specify the folder where persistable variables 
    are going to be saved. If you would like to save variables in separate 
    files, set `filename` None; if you would like to save all variables in a 
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be saved. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file to saved all variables. If you prefer to 
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
284 285 286 287
    """
    save_vars(
        executor,
        dirname=dirname,
288
        main_program=main_program,
289
        vars=None,
290
        predicate=is_persistable,
291
        filename=filename)
292 293


294 295 296 297 298
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
299
              filename=None):
300
    """
F
fengjiayi 已提交
301 302 303 304 305 306 307 308 309 310 311 312
    Load variables from the given directory by executor.

    There are two ways to specify variables to be loaded: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be loaded. The first way has a higher priority. In other words if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.

    The `dirname` are used to specify the folder where to load variables. 
    If variables were saved in separate files in the folder `dirname`, 
    set `filename` None; if all variables were saved in a single file, 
    use `filename` to specify it.
313

F
fengjiayi 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be loaded. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to load. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be loaded. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which saved all required variables. If variables 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
350

F
fengjiayi 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be loaded. And they are supposed to haven 
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
364 365
    """
    if vars is None:
366
        if main_program is None:
Y
Yu Yang 已提交
367
            main_program = default_main_program()
368
        if not isinstance(main_program, Program):
369 370 371 372 373
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
374
            vars=filter(predicate, main_program.list_vars()),
375
            filename=filename)
376 377 378
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
379 380

        load_var_map = {}
381 382
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
383 384
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
385
            new_var = _clone_var_in_block_(load_block, each_var)
386
            if filename is None:
387 388 389 390 391 392 393 394
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

395
        if filename is not None:
396 397 398 399
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

400
            load_block.append_op(
401
                type='load_combine',
402
                inputs={},
403
                outputs={"Out": load_var_list},
404
                attrs={'file_path': os.path.join(dirname, filename)})
405

406 407 408
        executor.run(load_prog)


409
def load_params(executor, dirname, main_program=None, filename=None):
410
    """
F
fengjiayi 已提交
411
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
412
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    the file `filename`.

    Use the `dirname` to specify the folder where parameters were saved. If 
    parameters were saved in separate files in the folder `dirname`, set 
    `filename` None; if all parameters were saved in a single file, use 
    `filename` to specify the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead. 

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all parameters. If parameters 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_params(executor=exe, dirname=param_path, 
                                main_program=None)
447 448
    """
    load_vars(
449 450 451
        executor,
        dirname=dirname,
        main_program=main_program,
452
        predicate=is_parameter,
453
        filename=filename)
454 455


456
def load_persistables(executor, dirname, main_program=None, filename=None):
457
    """
F
fengjiayi 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then trys to load these variables from the folder 
    `dirname` or the file `filename`.

    Use the `dirname` to specify the folder where persistable variables were 
    saved. If variables were saved in separate files, set `filename` None; 
    if all variables were saved in a single file, use `filename` to specify 
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be loaded. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all variables. If variables were 
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
489 490
    """
    load_vars(
491 492 493
        executor,
        dirname=dirname,
        main_program=main_program,
494
        predicate=is_persistable,
495
        filename=filename)
496 497


498 499
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
500
        main_program = default_main_program()
501 502
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
503 504 505
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
506 507
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
508 509 510
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
511 512 513 514
    inference_program = pruned_program.inference_optimize()
    return inference_program


515 516 517
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
518 519 520
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
521 522
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
523 524 525
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
526

527
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
528
        out = global_block.var(name)
K
Kexin Zhao 已提交
529 530 531
        global_block.prepend_op(
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
532
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
533 534 535
            attrs={'col': i})


536 537 538
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
539 540
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
541 542 543
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
544

545
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
546 547 548 549 550 551 552
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


553 554 555 556
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
557
                         main_program=None,
558 559
                         model_filename=None,
                         params_filename=None):
560
    """
F
fengjiayi 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
        feeded_var_names(list[str]): Names of variables that need to be feeded data 
                                     during inference.
        target_vars(list[Variable]): Variables from which we can get inference 
                                     results.
        executor(Executor): The executor that saves the inference model.
        main_program(Program|None): The original program, which will be pruned to 
                                    build the inference model. If is setted None, 
                                    the default main program will be used.
                                    Default: None.
        model_filename(str|None): The name of file to save the inference program 
                                  itself. If is setted None, a default filename 
                                  `__model__` will be used.
        params_filename(str|None): The name of file to save all related parameters. 
                                   If it is setted None, parameters will be saved 
                                   in separate files .
581

F
fengjiayi 已提交
582 583 584 585 586 587 588 589 590
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
591

F
fengjiayi 已提交
592 593 594 595 596 597 598 599 600 601
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

            # In this exsample, the function will prune the default main program 
            # to make it suitable for infering the `predict_var`. The pruned 
            # inference program is going to be saved in the "./infer_model/__model__" 
            # and parameters are going to be saved in separate files under folder
            # "./infer_model". 
602 603

    """
F
fengjiayi 已提交
604 605 606
    if isinstance(feeded_var_names, basestring):
        feeded_var_names = [feeded_var_names]
    else:
Q
Qiao Longfei 已提交
607 608 609 610
        if len(feeded_var_names) > 0:
            if not (bool(feeded_var_names) and all(
                    isinstance(name, basestring) for name in feeded_var_names)):
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
611 612

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
613
        target_vars = [target_vars]
F
fengjiayi 已提交
614 615 616 617 618
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

619
    if main_program is None:
Y
Yu Yang 已提交
620
        main_program = default_main_program()
621
    copy_program = main_program.clone()
622 623 624 625

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

626
    # Clear the is_target information and remove the existed feed and fetch op
627
    global_block = copy_program.global_block()
628 629 630 631
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            global_block.remove_op(i)
632
    copy_program.desc.flush()
633

634
    pruned_program = copy_program.prune(targets=target_vars)
635
    inference_program = pruned_program.inference_optimize()
636 637
    fetch_var_names = [v.name for v in target_vars]

K
Kexin Zhao 已提交
638 639
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
640

641 642
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
643
    else:
644 645
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
646

647 648 649 650
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
651
        f.write(inference_program.desc.serialize_to_string())
652

653
    save_persistables(executor, dirname, inference_program, params_filename)
654 655


656 657 658 659
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
                         params_filename=None):
660 661 662
    """
    Load inference model from a directory

F
fengjiayi 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
                                  If it is None, the default filename 
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
                                   It is only used for the case that all 
                                   parameters were saved in a single binary 
                                   file. If parameters were saved in separate 
                                   files, set it as 'None'.

    Returns:
        tuple: The return of this function is a tuple with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a 
        Program, it's the program for inference. The `feed_target_names` is 
        a list of str, it contains Names of variables that need to feed 
        data in the inference program. The `fetch_targets` is a list of 
        Variable. It contains variables from which we can get inference 
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            [inference_program, feed_target_names, fetch_targets] = 
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

F
fengjiayi 已提交
699
            # In this exsample, the inference program was saved in the 
F
fengjiayi 已提交
700 701 702 703 704
            # "./infer_model/__model__" and parameters were saved in 
            # separate files in ""./infer_model". 
            # After getting inference program, feed target names and 
            # fetch targets, we can use an Executor to run the inference 
            # program to get the inference result.
705

706 707 708 709
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

710 711
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
712
    else:
713 714 715 716 717
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
718

719
    with open(model_filename, "rb") as f:
720 721
        program_desc_str = f.read()

722
    program = Program.parse_from_string(program_desc_str)
723
    load_persistables(executor, dirname, program, params_filename)
724

725 726
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
727 728 729 730 731
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
732 733 734 735


def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
736 737 738 739 740 741 742 743 744 745 746
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
747

F
fengjiayi 已提交
748 749
    Examples:
        .. code-block:: python
X
xuwei06 已提交
750

F
fengjiayi 已提交
751 752 753
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
754

X
xuwei06 已提交
755
    """
X
xuwei06 已提交
756 757
    assert is_parameter(para)

X
xuwei06 已提交
758 759 760 761 762 763 764 765
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
766
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
767

F
fengjiayi 已提交
768 769 770 771 772 773 774
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
775

F
fengjiayi 已提交
776 777
    Returns:
        numpy.array: The parameter's values.
778

F
fengjiayi 已提交
779 780 781 782 783
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
784

F
fengjiayi 已提交
785 786 787 788 789
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
790 791
    """
    if program is None:
Y
Yu Yang 已提交
792
        program = default_main_program()
X
xuwei06 已提交
793 794
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
795 796


T
tangwei12 已提交
797
SUCCESS_MARK_FILENAME = "_SUCCESS"
798
CHECKPOINT_PREFIX = "checkpoint"
T
tangwei12 已提交
799
MODEL_DIR = "__model__"
800
LOOKUP_TABLE_DIR = "__lookup_table__"
T
tangwei12 已提交
801
TRAINER_PREFIX = "trainer"
802
CHECKPOINT_SEPARATOR = "_"
T
tangwei12 已提交
803 804 805


def save_checkpoint(executor,
T
tangwei12 已提交
806
                    checkpoint_dir,
T
tangwei12 已提交
807 808
                    trainer_id,
                    trainer_args=None,
T
tangwei12 已提交
809
                    main_program=None,
T
tangwei12 已提交
810 811
                    max_num_checkpoints=3,
                    lookup_table=None,
T
bug fix  
tangwei12 已提交
812
                    ps_endpoint_list=None):
T
tangwei12 已提交
813
    """
F
fengjiayi 已提交
814
    This function filters out all checkpoint variables from the give
F
fengjiayi 已提交
815
    main_program and then saves these variables to the `checkpoint_dir` 
F
fengjiayi 已提交
816 817 818 819
    directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there might be a lot of checkpoints in the 
F
fengjiayi 已提交
820
    `checkpoint_dir`. To avoid them taking too much disk space, the 
F
fengjiayi 已提交
821 822
    `max_num_checkpoints` are introduced to limit the total number of 
    checkpoints. If the number of existing checkpints is greater than 
F
fengjiayi 已提交
823
    the `max_num_checkpoints`, oldest ones will be scroll deleted.
F
fengjiayi 已提交
824

F
fengjiayi 已提交
825 826
    A variable is a checkpoint variable and will be saved if it meets
    all following conditions:
F
fengjiayi 已提交
827 828 829
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
T
tangwei12 已提交
830

F
fengjiayi 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
    Args:
        executor(Executor): The executor to run for save checkpoint.
        checkpoint_dir(str): The folder where to save checkpoints.
        trainer_id(int): currect trainer id, if id is equal to 0, the trainer 
            is chief.
        trainer_args(dict|None): Current training arguments. Such as 'epoch_id' 
            and 'step_id'.
            Defaut: None
        main_program(Program|None): The program whose checkpoint variables will
            be saved. If it is None, the default main program will be used.
        max_num_checkpoints(int): The max number of total number of existing 
            checkpoints.
            Default: 3
T
tangwei12 已提交
844 845 846 847 848 849
        lookup_table(string|None): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        ps_endpoint_list(list|None): the parameter server ip:port list.  
            when use distribute lookup table, we can get ps_endpoint_list by 
            distribute arguments.
F
fengjiayi 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        AssertionError: If `trainer_args` is not a dict.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            trainer_args = {"epoch_id": 200,
                            "step_id": 20} # just an example
T
tangwei12 已提交
866 867 868
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

F
fengjiayi 已提交
869 870 871 872 873
            fluid.io.save_checkpoint(executor=exe,
                                     checkpoint_dir=path,
                                     trainer_id=0,
                                     trainer_args=trainer_args,
                                     main_program=prog,
T
tangwei12 已提交
874 875 876
                                     max_num_checkpoints=3,
                                     lookup_table=table_name,
                                     ps_endpoint_list = ps_endpoints)
T
tangwei12 已提交
877 878
    """
    if checkpoint_dir is None:
T
tangwei12 已提交
879
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
880
    assert checkpoint_dir
T
tangwei12 已提交
881

T
tangwei12 已提交
882 883
    if trainer_args:
        assert isinstance(trainer_args, dict)
T
tangwei12 已提交
884

T
bug fix  
tangwei12 已提交
885 886
    is_chief = trainer_id == 0

T
bug fix  
tangwei12 已提交
887
    _make_chekcpoint_dirs(checkpoint_dir)
T
tangwei12 已提交
888
    serial = get_latest_checkpoint_serial(checkpoint_dir) + 1
T
tangwei12 已提交
889
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
T
tangwei12 已提交
890

T
tangwei12 已提交
891 892
    save_trainer_args(cur_dir, trainer_id, trainer_args)

T
bug fix  
tangwei12 已提交
893
    if is_chief:
T
tangwei12 已提交
894
        save_persist_vars_without_grad(executor, cur_dir, main_program)
T
tangwei12 已提交
895

T
bug fix  
tangwei12 已提交
896 897 898
    if is_chief and lookup_table and ps_endpoint_list:
        save_pserver_vars_by_notify(executor, cur_dir, lookup_table,
                                    ps_endpoint_list)
T
tangwei12 已提交
899

T
tangwei12 已提交
900
    _scroll_delete(checkpoint_dir, max_num_checkpoints)
T
tangwei12 已提交
901 902


T
tangwei12 已提交
903
def load_checkpoint(executor, checkpoint_dir, serial, main_program):
T
tangwei12 已提交
904
    """
F
fengjiayi 已提交
905 906
    This function filters out all checkpoint variables from the give
    main_program and then try to load these variables from the
F
fengjiayi 已提交
907
    `checkpoint_dir` directory.
F
fengjiayi 已提交
908 909

    In the training precess, we generally save a checkpoint in each
F
fengjiayi 已提交
910 911
    iteration. So there are more than one checkpoint in the 
    `checkpoint_dir` (each checkpoint has its own sub folder), use 
F
fengjiayi 已提交
912
    `serial` to specify which serial of checkpoint you would like to
F
fengjiayi 已提交
913 914 915
    load.

    A variable is a checkpoint variable and will be loaded if it meets
F
fengjiayi 已提交
916
    all following conditions:
F
fengjiayi 已提交
917 918 919 920 921 922 923 924 925 926
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading checkpoint.
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        main_program(Program): The program whose checkpoint variables will
                               be loaded.
T
tangwei12 已提交
927

F
fengjiayi 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        ValueError: If `serial` is None or `serial` is less than 0.
        ValueError: If `main_program` is None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            fluid.io.load_checkpoint(executor=exe, checkpoint_dir=path,
                    serial=9, main_program=prog)

            # In this example, `load_checkpoint` function
            # will first filters out all checkpoint variables in the default
            # main program, and then try to load these variables form the
            # folder "./checkpoints/checkpoint_9/__model__".
T
tangwei12 已提交
949
    """
T
tangwei12 已提交
950

T
tangwei12 已提交
951
    if checkpoint_dir is None:
T
tangwei12 已提交
952
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
953

T
tangwei12 已提交
954
    if serial is None or serial < 0:
T
tangwei12 已提交
955
        raise ValueError("'serial' should not be None or <0 ")
T
tangwei12 已提交
956

T
tangwei12 已提交
957
    if main_program is None:
T
tangwei12 已提交
958
        raise ValueError('main_program should not be None.')
959

T
tangwei12 已提交
960
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
T
tangwei12 已提交
961
    load_persist_vars_without_grad(executor, cur_dir, main_program, True)
T
tangwei12 已提交
962 963


T
tangwei12 已提交
964 965
def clean_checkpoint(checkpoint_dir, delete_dir=False):
    """
T
tangwei12 已提交
966 967
    clean the checkpoint dir, when the train exits normally, 
    the trainer will call clean_checkpoint to delete checkpoint directory saved before.
T
tangwei12 已提交
968
    delete_dir only works when the directory is empty, otherwise, OSError is raised.  
969

F
fengjiayi 已提交
970 971
    : param checkpoint_dir
    : param delete_dir
T
tangwei12 已提交
972
    """
973

T
tangwei12 已提交
974
    if checkpoint_dir is None:
T
tangwei12 已提交
975
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
976
    _scroll_delete(checkpoint_dir, max_num_checkpoints=0)
T
tangwei12 已提交
977 978 979 980 981

    if delete_dir and not os.listdir(checkpoint_dir):
        os.rmdir(checkpoint_dir)


T
tangwei12 已提交
982 983 984 985
def load_persist_vars_without_grad(executor,
                                   dirname,
                                   program,
                                   has_model_dir=False):
T
tangwei12 已提交
986
    """
F
fengjiayi 已提交
987
    This function filters out all checkpoint variables from the give
F
fengjiayi 已提交
988
    program and then trys to load these variables from the given directory.
F
fengjiayi 已提交
989

F
fengjiayi 已提交
990
    A variable is a checkpoint variable if it meets all following
F
fengjiayi 已提交
991 992 993 994
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
995

F
fengjiayi 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be loaded.
        has_model_dir(bool): if True, the function loads variables
                             from a sub directory named '__model__'.
                             Default: False

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog, has_model_dir=True)

            # In this example, `load_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then trys to load these variables form the
            # folder "./my_paddle_model/__model__".
T
tangwei12 已提交
1021 1022
    """

T
tangwei12 已提交
1023
    if has_model_dir:
T
tangwei12 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        dirname = _get_model_dir(dirname)

    load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var,
        filename=None)


T
bug fix  
tangwei12 已提交
1034
def load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
T
tangwei12 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    """
    The parameter server will load lookup table's local file in 
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name
    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            dirname = "./checkpoints/checkpoint_9/__model__"
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
            fluid.io.load_lookup_table_vars(executor=exe,
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """
T
bug fix  
tangwei12 已提交
1060 1061 1062 1063 1064 1065 1066 1067

    for var in program.list_vars():
        if var.name == table_name:
            lookup_table_var = var
            break

    assert lookup_table_var is not None

1068
    lookup_table_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
T
bug fix  
tangwei12 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    table_file = table_name + CHECKPOINT_SEPARATOR + str(pserver_id)

    load_prog = Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})
1079

T
bug fix  
tangwei12 已提交
1080
    executor.run(load_prog)
1081 1082


T
tangwei12 已提交
1083 1084
def save_persist_vars_without_grad(executor, dirname, program):
    """
F
fengjiayi 已提交
1085 1086 1087 1088
    This function filters out all checkpoint variables from the give
    program and then save these variables to a sub-folder '__model__' of 
    the given directory.

F
fengjiayi 已提交
1089
    A variable is a checkpoint variable if it meets all following
F
fengjiayi 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be saved.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog)
1112

F
fengjiayi 已提交
1113 1114 1115 1116
            # In this example, `save_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then saves these variables to the folder 
            # "./my_paddle_model/__model__".
T
tangwei12 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    """
    cur_dir = _get_model_dir(dirname)
    save_vars(
        executor,
        dirname=cur_dir,
        main_program=program,
        vars=None,
        predicate=_is_checkpoint_var,
        filename=None)
    _write_success(cur_dir)


T
bug fix  
tangwei12 已提交
1129 1130
def save_pserver_vars_by_notify(executor, dirname, lookup_table,
                                ps_endpoint_list):
T
tangwei12 已提交
1131
    """
T
tangwei12 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name, 
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save checkpoints.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        ps_endpoint_list(list): the parameter server ip:port list.  
            when use distribute lookup table, we can get ps_endpoint_list by 
            distribute arguments.
    Return:
        None
    
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            fluid.io.save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name, 
                    ps_endpoint_list=ps_endpoints)
T
tangwei12 已提交
1161 1162 1163 1164 1165 1166 1167
    """
    cur_dir = _get_lookuptable_dir(dirname)

    checkpoint_notify_program = Program()
    checkpoint_notify_block = checkpoint_notify_program.global_block()

    attrs = {}
T
tangwei12 已提交
1168
    attrs['epmap'] = ps_endpoint_list
T
tangwei12 已提交
1169
    attrs['dir'] = cur_dir
T
tangwei12 已提交
1170
    attrs['lookup_table'] = lookup_table
T
tangwei12 已提交
1171 1172

    checkpoint_notify_block.append_op(
T
tangwei12 已提交
1173
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
T
tangwei12 已提交
1174 1175 1176
    executor.run(checkpoint_notify_program)


T
tangwei12 已提交
1177
def save_trainer_args(dirname, trainer_id, trainer_args):
T
tangwei12 已提交
1178 1179
    assert isinstance(trainer_args, dict)

T
tangwei12 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    cur_dir = _get_trainer_dir(dirname, trainer_id)

    for name, value in trainer_args.iteritems():
        args_file = os.path.join(cur_dir, name)
        with open(args_file, 'w') as f:
            f.write(str(value))
    _write_success(cur_dir)


def load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
T
tangwei12 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    """
    trainer will load some args from it's  independent directory, 
    such as epoch_id and step_id.

    Args:
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        trainer_id(int): current trainer id.
        trainer_args(list): list about load trainer args
    Return:
        None

    Examples:
        .. code-block:: python

            param_path = "./checkpoint/"
            serial = 7
            trainer_id = 2
            trainer_args = ["epoch_id", "step_id"]

            fluid.io.load_trainer_args(checkpoint_dir=param_path, serial=serial,
            trainer_id=trainer_id, trainer_args=trainer_args)
    """
T
tangwei12 已提交
1213 1214
    assert isinstance(trainer_args, list)

T
tangwei12 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
    cur_dir = _get_trainer_dir(cur_dir, trainer_id)

    ret_values = []

    for arg in trainer_args:
        cur_file = os.path.join(cur_dir, arg)
        with open(cur_file, 'r') as f:
            contents = f.read()
            ret_values.append(contents.strip())
    return ret_values


T
tangwei12 已提交
1228
def _is_checkpoint_var(var):
T
tangwei12 已提交
1229
    """
T
tangwei12 已提交
1230 1231 1232
    the checkpoint will not save or load all the variables.
    var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

T
tangwei12 已提交
1233
    : param var(Variable)
T
tangwei12 已提交
1234
    """
T
tangwei12 已提交
1235 1236 1237 1238
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.RAW:
        return False
T
tangwei12 已提交
1239
    # @GRAD are named for gradient variables, checkpoint will not save it.
T
tangwei12 已提交
1240 1241
    if "@GRAD" in var.name:
        return False
T
tangwei12 已提交
1242
    # .trainer_ are named for distribute train variables, checkpoint will not save it.
T
tangwei12 已提交
1243 1244 1245
    if ".trainer_" in var.name:
        return False

T
tangwei12 已提交
1246
    # .block is named for distribute train variables, checkpoint will not save it.
T
tangwei12 已提交
1247
    if ".block" in var.name:
T
tangwei12 已提交
1248 1249 1250
        return False

    return var.persistable
T
tangwei12 已提交
1251 1252


T
bug fix  
tangwei12 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
def _make_chekcpoint_dirs(dirs):
    assert dirs is not None

    if os.path.isfile(dirs):
        raise OSError(errno.ENOTDIR, "dirs path shoule be a Directory.", dirs)

    if not os.path.isdir(dirs):
        try:
            os.makedirs(dirs)
        except OSError as err:
            if err.errno != errno.EEXIST:
                raise err


T
tangwei12 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
def _get_dir_serial(dirname):
    _, serial = dirname.split(CHECKPOINT_SEPARATOR)

    try:
        serial_num = int(serial)
    except ValueError:
        serial_num = -1
    return serial_num


def _get_serial_dir(dirname, serial):
    serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial)
T
tangwei12 已提交
1279
    serial_dir = os.path.join(dirname, serial_folder)
T
bug fix  
tangwei12 已提交
1280
    _make_chekcpoint_dirs(serial_dir)
T
tangwei12 已提交
1281 1282 1283 1284 1285 1286

    return serial_dir


def _get_model_dir(dirname):
    model_dir = os.path.join(dirname, MODEL_DIR)
T
bug fix  
tangwei12 已提交
1287
    _make_chekcpoint_dirs(model_dir)
T
tangwei12 已提交
1288 1289 1290
    return model_dir


T
tangwei12 已提交
1291 1292
def _get_lookuptable_dir(dirname):
    lookuptable_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
T
bug fix  
tangwei12 已提交
1293
    _make_chekcpoint_dirs(lookuptable_dir)
T
tangwei12 已提交
1294 1295 1296
    return lookuptable_dir


T
tangwei12 已提交
1297 1298 1299
def _get_trainer_dir(dirname, trainer_id):
    trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id)
    trainer_dir = os.path.join(dirname, trainer_folder)
T
bug fix  
tangwei12 已提交
1300
    _make_chekcpoint_dirs(trainer_dir)
T
tangwei12 已提交
1301
    return trainer_dir
T
tangwei12 已提交
1302 1303


T
tangwei12 已提交
1304
def _scroll_delete(dirname, max_num_checkpoints=3):
T
tangwei12 已提交
1305
    dirs = os.listdir(dirname)
T
tangwei12 已提交
1306
    serial_map = {}
T
tangwei12 已提交
1307
    for serial in dirs:
T
tangwei12 已提交
1308 1309
        serial_num = _get_dir_serial(serial)
        serial_map[serial_num] = serial
T
tangwei12 已提交
1310

T
tangwei12 已提交
1311
    if len(serial_map.keys()) <= max_num_checkpoints:
T
tangwei12 已提交
1312 1313
        return

T
tangwei12 已提交
1314
    serials = serial_map.keys()
T
tangwei12 已提交
1315
    serials.sort(reverse=True)
T
tangwei12 已提交
1316
    serials = serials[max_num_checkpoints:]
T
tangwei12 已提交
1317
    for serial in serials:
T
tangwei12 已提交
1318
        cur_dir = _get_serial_dir(dirname, serial)
T
bug fix  
tangwei12 已提交
1319 1320 1321 1322 1323
        try:
            shutil.rmtree(cur_dir)
        except OSError as err:
            if err.errno != errno.ENOENT:
                raise err
T
tangwei12 已提交
1324 1325


T
tangwei12 已提交
1326 1327
def _write_success(dirname):
    """
T
tangwei12 已提交
1328
    write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
T
tangwei12 已提交
1329

F
fengjiayi 已提交
1330
    : param dirname
T
tangwei12 已提交
1331
    """
T
tangwei12 已提交
1332
    success_file = os.path.join(dirname, SUCCESS_MARK_FILENAME)
T
bug fix  
tangwei12 已提交
1333
    with open(success_file, 'a') as f:
1334
        now = time.ctime()
T
bug fix  
tangwei12 已提交
1335
        f.write(now)
T
tangwei12 已提交
1336 1337


T
tangwei12 已提交
1338
def get_latest_checkpoint_serial(checkpoint_dir):
T
tangwei12 已提交
1339
    """
T
tangwei12 已提交
1340 1341
    get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory

F
fengjiayi 已提交
1342
    : param checkpoint_dir
T
tangwei12 已提交
1343
    """
T
tangwei12 已提交
1344
    if not checkpoint_dir:
T
tangwei12 已提交
1345
        return -1
T
tangwei12 已提交
1346 1347 1348 1349 1350 1351

    def has_success(checkpoint_dir, cur_dir):
        """
        is _SUCCESS in this dir
        """

T
tangwei12 已提交
1352
        serial = _get_dir_serial(cur_dir)
T
tangwei12 已提交
1353 1354
        if serial == -1 or not os.path.isdir(
                os.path.join(checkpoint_dir, cur_dir)):
1355 1356 1357
            return -1

        success_path = os.path.join(
T
tangwei12 已提交
1358 1359
            _get_serial_dir(checkpoint_dir, serial), MODEL_DIR,
            SUCCESS_MARK_FILENAME)
T
tangwei12 已提交
1360
        if os.path.isfile(success_path):
T
tangwei12 已提交
1361
            return serial
T
tangwei12 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

    if not os.path.isdir(checkpoint_dir):
        return -1

    current_dir = -1
    dirs = os.listdir(checkpoint_dir)
    for cur_dir in dirs:
        success_num = has_success(checkpoint_dir, cur_dir)
        if success_num > current_dir:
            current_dir = success_num
    return current_dir