loss.py 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define loss functions of neural network  
16
import numpy as np
L
Leo Chen 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.core as core
19
import paddle
20
from .. import functional as F
21

L
Leo Chen 已提交
22
__all__ = [
23
    #       'NCELoss',
24
    'CrossEntropyLoss',
25
    'MSELoss',
L
Leo Chen 已提交
26
    'L1Loss',
27
    'NLLLoss',
28
    'BCELoss',
29
    'KLDivLoss',
30 31
    'MarginRankingLoss',
    'SmoothL1Loss',
L
Leo Chen 已提交
32 33 34
]


35 36
class CrossEntropyLoss(fluid.dygraph.Layer):
    """
37 38
	:alias_main: paddle.nn.CrossEntropyLoss
	:alias: paddle.nn.CrossEntropyLoss,paddle.nn.layer.CrossEntropyLoss,paddle.nn.layer.loss.CrossEntropyLoss
S
swtkiwi 已提交
39

40 41
    This operator implements the cross entropy loss function. This OP combines ``LogSoftmax``,
    and ``NLLLoss`` together.
42

43 44
    It is useful when training a classification problem with ``C`` classes.
    If provided, the optional argument ``weight`` should be a 1D Variable assigning
45 46 47
    weight to each of the classes.

    For predictions label, and target label, the loss is calculated as follows.
48

49 50 51 52 53
    .. math::

        loss_j =  -\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right), j = 1,..., K

54 55
    If weight is not ``None``:

56 57 58 59 60 61
    .. math::

        loss_j =  \\text{weight[class]}(-\\text{input[class]} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{input}_i)\\right)), j = 1,..., K

    Parameters:
62 63 64 65 66 67
        input (Variable): Input tensor, the data type is float32, float64. Shape is
	    (N, C), where C is number of classes, and if shape is more than 2D, this
	    is (N, C, D1, D2,..., Dk), k >= 1. 
        label (Variable): Label tensor, the data type is int64. Shape is (N), where each 
	    value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
	    (N, D1, D2,..., Dk), k >= 1.
68
        weight (Variable, optional): Weight tensor, a manual rescaling weight given
69 70
            to each class and the shape is (C). It has the same dimensions as class
	    number and the data type is float32, float64. Default is ``'None'``.
71 72 73 74 75 76
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
77 78
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient. Default is ``-100``.
79

80 81
    Returns:
        The tensor variable storing the cross_entropy_loss of input and label.
82

83
    Return type: Variable.
84

85 86 87 88 89 90 91 92
    Examples:
        .. code-block:: python

            # declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np

93 94 95
            input = fluid.data(name='input', shape=[5, 100], dtype='float64')
            label = fluid.data(name='label', shape=[5], dtype='int64')
            weight = fluid.data(name='weight', shape=[100], dtype='float64')
96
            ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
97
            output = ce_loss(input, label)
98 99 100
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
101 102 103
            input_data = np.random.random([5, 100]).astype("float64")
            label_data = np.random.randint(0, 100, size=(5)).astype(np.int64)
            weight_data = np.random.random([100]).astype("float64")
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
            output = exe.run(fluid.default_main_program(),
                        feed={"input": input_data, "label": label_data,"weight": weight_data},
                        fetch_list=[output],
                        return_numpy=True)
            print(output)

            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                weight = dg.to_variable(weight_data)
                ce_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight, reduction='mean')
                output = ce_loss(input, label)
                print(output.numpy())
    """

121
    def __init__(self, weight=None, reduction='mean', ignore_index=-100):
122 123 124
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
125
        self.ignore_index = ignore_index
126 127 128

    def forward(self, input, label):
        fluid.data_feeder.check_variable_and_dtype(
129 130 131
            input, 'input', ['float32', 'float64'], 'cross_entropy_loss')
        fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                                   'cross_entropy_loss')
132 133 134

        if self.reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
135 136 137 138 139 140 141 142 143 144 145 146 147 148
                "The value of 'reduction' in cross_entropy_loss should be 'sum', 'mean' or"
                " 'none', but received %s, which is not allowed." %
                self.reduction)

        log_softmax = paddle.nn.LogSoftmax()
        log_softmax_out = log_softmax(input)
        if self.weight is not None and not isinstance(self.weight,
                                                      fluid.framework.Variable):
            raise ValueError(
                "The weight' is not a Variable, please convert to Variable.")
        nll_loss = paddle.nn.loss.NLLLoss(
            weight=self.weight,
            reduction=self.reduction,
            ignore_index=self.ignore_index)
149

150
        return nll_loss(log_softmax_out, label)
151 152


153 154
class MSELoss(fluid.dygraph.layers.Layer):
    """
155 156
	:alias_main: paddle.nn.MSELoss
	:alias: paddle.nn.MSELoss,paddle.nn.layer.MSELoss,paddle.nn.layer.loss.MSELoss
S
swtkiwi 已提交
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

176
    where `input` and `label` are `float32` tensors of same shape.
177 178

    Parameters:
179 180
        input (Variable): Input tensor, the data type is float32,
        label (Variable): Label tensor, the data type is float32,
181 182
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
183 184 185 186 187 188 189 190 191 192
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned. 
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned. 
            Default is ``'mean'``.

    Returns:
        The tensor variable storing the MSE loss of input and label.

    Return type:
        Variable.
193 194 195

    Examples:
        .. code-block:: python
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

            import numpy as np
            import paddle
            from paddle import fluid
            import paddle.fluid.dygraph as dg

            mse_loss = paddle.nn.loss.MSELoss()
            input = fluid.data(name="input", shape=[1])
            label = fluid.data(name="label", shape=[1])
            place = fluid.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            # declarative mode
            output = mse_loss(input,label)
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output_data = exe.run(
                fluid.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # imperative mode
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = mse_loss(input, label)
                print(output.numpy())
                # [0.04000002]
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
                "but received {}.".format(reduction))
        self.reduction = reduction

    def forward(self, input, label):
        if not fluid.framework.in_dygraph_mode():
            fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                                       ['float32'], 'MSELoss')
            fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                                       ['float32'], 'MSELoss')

        square_out = fluid.layers.square(
            fluid.layers.elementwise_sub(input, label))
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


L
Leo Chen 已提交
257 258 259
class L1Loss(fluid.dygraph.Layer):
    """
    This interface is used to construct a callable object of the ``L1Loss`` class.
260
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
261

262
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
263 264

    .. math::
265
        Out = \lvert input - label\rvert
266

267
    If `reduction` set to ``'mean'``, the loss is:
268

L
Leo Chen 已提交
269
    .. math::
270
        Out = MEAN(\lvert input - label\rvert)
271

272
    If `reduction` set to ``'sum'``, the loss is:
273

L
Leo Chen 已提交
274
    .. math::
275
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
276 277 278 279 280

    
    Parameters:
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
281 282 283
            If `reduction` is ``'none'``, the unreduced loss is returned; 
            If `reduction` is ``'mean'``, the reduced mean loss is returned. 
            If `reduction` is ``'sum'``, the reduced sum loss is returned. 
L
Leo Chen 已提交
284
            Default is ``'mean'``.
285 286 287
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
288 289 290 291 292
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
        output (Tensor): The L1 Loss of ``input`` and ``label``. 
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
293
            
L
Leo Chen 已提交
294 295 296
    Examples:
        .. code-block:: python
            import paddle
297 298 299
            import numpy as np

            paddle.disable_static()
300
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
301
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
302
            input = paddle.to_variable(input_data)
303 304 305
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.loss.L1Loss()
306
            output = l1_loss(input, label)
307 308 309 310
            print(output.numpy())  
            # [0.35]

            l1_loss = paddle.nn.loss.L1Loss(reduction='sum')
311
            output = l1_loss(input, label)
312 313 314 315
            print(output.numpy())  
            # [1.4]

            l1_loss = paddle.nn.loss.L1Loss(reduction='none')
316
            output = l1_loss(input, label)
317 318 319
            print(output.numpy())  
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]
L
Leo Chen 已提交
320 321
    """

322
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
323 324 325 326 327 328
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)
        super(L1Loss, self).__init__()
        self.reduction = reduction
329
        self.name = name
L
Leo Chen 已提交
330

331
    def forward(self, input, label):
332
        return paddle.nn.functional.l1_loss(
333
            input, label, self.reduction, name=self.name)
C
ceci3 已提交
334 335 336 337


class BCELoss(fluid.dygraph.Layer):
    """
338 339
	:alias_main: paddle.nn.BCELoss
	:alias: paddle.nn.BCELoss,paddle.nn.layer.BCELoss,paddle.nn.layer.loss.BCELoss
S
swtkiwi 已提交
340

C
ceci3 已提交
341 342 343 344
    This interface is used to construct a callable object of the ``BCELoss`` class.
    The BCELoss layer measures the binary_cross_entropy loss between input predictions 
    and target labels. The binary_cross_entropy loss can be described as:

C
ceci3 已提交
345
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
346 347

    .. math::
C
ceci3 已提交
348 349
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
350 351

    .. math::
C
ceci3 已提交
352 353 354
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the unreduced loss is:
C
ceci3 已提交
355

C
ceci3 已提交
356 357 358
    .. math::
        Out = Out
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
359

C
ceci3 已提交
360 361 362
    .. math::
        Out = MEAN(Out)
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
363

C
ceci3 已提交
364 365
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
366 367 368 369 370 371 372 373

    Note that the input predictions always be the output of sigmoid, and the target labels 
    should be numbers between 0 and 1.

    The shape of input predictions and target labels are [N, *], where N is batch_size and `*` 
    means any number of additional dimensions. If ``reduction`` is ``'none'``, the shape of 
    output is scalar, else the shape of output is same as input.

C
ceci3 已提交
374
    Parameters:
C
ceci3 已提交
375 376 377
        weight (Variable, optional): A manual rescaling weight given to the loss of each 
            batch element. If given, has to be a Variable of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
C
ceci3 已提交
378 379
        reduction (str, optional): Indicate how to average the loss by batch_size, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
380
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
C
ceci3 已提交
381
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
C
ceci3 已提交
382
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
383
            Default is ``'mean'``.
C
ceci3 已提交
384 385 386 387

    Returns: 
        A callable object of BCELoss.

C
ceci3 已提交
388 389
    Examples:
        .. code-block:: python
C
ceci3 已提交
390

C
ceci3 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
            # declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            input = fluid.data(name="input", shape=[3, 1], dtype='float32')
            label = fluid.data(name="label", shape=[3, 1], dtype='float32')
            bce_loss = paddle.nn.loss.BCELoss()
            output = bce_loss(input, label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
    
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
            output_data = exe.run(fluid.default_main_program(),
                    feed={"input":input_data, "label":label_data},
                    fetch_list=[output],
                    return_numpy=True)
    
            print(output_data)  # [array([0.65537095], dtype=float32)]
            
            # imperative mode
            import paddle.fluid.dygraph as dg
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                label = dg.to_variable(label_data)
                output = bce_loss(input, label)
                print(output.numpy())  # [0.65537095]
    """

    def __init__(self, weight=None, reduction='mean'):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
                "received %s, which is not allowed." % reduction)

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction

    def forward(self, input, label):
        dtype = self._helper.input_dtype(input)

        fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'bce_loss')
        fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'bce_loss')

        out = self._helper.create_variable_for_type_inference(dtype=input.dtype)
        self._helper.append_op(
            type='bce_loss',
            inputs={
                'X': [input],
                'Label': [label],
            },
            outputs={'Out': [out]})

        if self.weight is not None:
            if isinstance(self.weight, fluid.framework.Variable):
                w = self.weight
C
ceci3 已提交
451
                out = fluid.layers.elementwise_mul(out, w, axis=-1)
C
ceci3 已提交
452 453 454 455 456 457 458 459 460 461
            else:
                raise ValueError(
                    "The weight is not a Variable, please convert to Variable.")

        if self.reduction == 'sum':
            return fluid.layers.reduce_sum(out)
        elif self.reduction == 'mean':
            return fluid.layers.reduce_mean(out)
        else:
            return out
462 463 464 465


class NLLLoss(fluid.dygraph.Layer):
    """
466 467
	:alias_main: paddle.nn.NLLLoss
	:alias: paddle.nn.NLLLoss,paddle.nn.layer.NLLLoss,paddle.nn.layer.loss.NLLLoss
S
swtkiwi 已提交
468

469
    This class accepts input and target label and returns negative log likelihood
470 471 472
    cross error. It is useful to train a classification problem with C classes.
     
    The input for the loss is epected to contain log-probabilities of
473
    each classes. It has to be a Tensor of size either (batch_size, C) or
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
    
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
 
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
        \ell(x, y) = L = \{l_1,\dots,l_N\}^\\top, \quad
        l_n = - w_{y_n} x_{n,y_n}, \quad
        w_{c} = \\text{weight}[c] \cdot \mathbb{1}\{c \\not= \\text{ignore\\_index}\},

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
        \ell(x, y) = \\begin{cases}
            \\sum_{n=1}^N \\frac{1}{\\sum_{n=1}^N w_{y_n}} l_n, &
            \\text{if reduction} = \\text{'mean';}\\\\
            \\sum_{n=1}^N l_n,  &
            \\text{if reduction} = \\text{'sum'.}
        \\end{cases}

    Parameters:
503 504
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
505 506
            it treated as if having all ones. the data type is 
            float32, float64, Default is ``'None'``.
507 508
        ignore_index (int64, optional): Specifies a target value that is ignored
            and does not contribute to the input gradient.
509 510
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
511 512 513
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
514
            Default is ``'mean'``.
515 516
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.
517

518 519 520 521 522 523 524 525 526
    Shape:
        input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
        label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
            The data type is int64.
        output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
527 528 529 530

    Examples:
        .. code-block:: python

531 532
                import paddle
                import numpy as np
533

534 535
                nll_loss = paddle.nn.layer.NLLLoss()
                log_softmax = paddle.nn.LogSoftmax(axis=1)
536

537 538 539 540 541 542
                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                 [0.53331435, 0.07999352, 0.8549948 ],
                                 [0.25879037, 0.39530203, 0.698465  ],
                                 [0.73427284, 0.63575995, 0.18827209],
                                 [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)
543

544 545 546 547 548 549 550
                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
551

552
    """
553

554 555 556 557 558 559
    def __init__(self,
                 weight=None,
                 ignore_index=-100,
                 reduction='mean',
                 name=None):
        if reduction not in ['sum', 'mean', 'none']:
560
            raise ValueError(
561 562 563 564 565 566 567
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
                "'none', but received %s, which is not allowed." % reduction)
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
568

569 570 571 572 573 574 575 576
    def forward(self, input, label):
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name)
577 578


579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
class KLDivLoss(fluid.dygraph.Layer):
    """
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
        reduction (str, optional): Indicate how to average the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned; 
            Default is ``'mean'``.

    Shape:
      - input: (N, *) where * means, any number of additional dimensions.
      - label: (N, *), same shape as input
      - output: tensor with shape: (1) by default.


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
            
            paddle.enable_imperative()

            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5]
            
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
            pred_loss = kldiv_criterion(paddle.to_variable(x),
                                        paddle.to_variable(target))
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
        out = paddle.nn.functional.kl_div(input, label, self.reduction)
        return out


648 649 650 651
class MarginRankingLoss(fluid.dygraph.Layer):
    """

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
652
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label 
653 654 655
    , use the math function as follows.

    .. math:: 
656
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape: 
        input: N-D Tensor, the shape is [N, *], N is batch size and `*` means any number of additional dimensions., available dtype is float32, float64.
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
678 679
        label: N-D Tensor, label have the same shape and dtype as `input`.
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

            import numpy as np 
            import paddle 
            
            paddle.disable_static()
             
            input = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype("float32"))
            other = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype("float32"))
695
            label = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype("float32"))
696
            margin_rank_loss = paddle.nn.MarginRankingLoss()
697
            loss = margin_rank_loss(input, other, label) 
698 699 700 701 702 703
            print(loss.numpy()) # [0.75]
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
704
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
705 706 707 708 709 710
                "received %s, which is not allowed." % reduction)
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

711
    def forward(self, input, other, label):
712
        out = paddle.nn.functional.margin_ranking_loss(
713
            input, other, label, self.margin, self.reduction, self.name)
714
        return out
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790


class SmoothL1Loss(fluid.dygraph.Layer):
    """
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

         loss(x,y)=\\frac{1}{n}\\sum_{i}z_i

    where z_i is given by:

    .. math::

         \\mathop{z_i}=\\left\\{\\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\\\
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
        \\end{array} \\right.

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        delta (float, optional): Specifies the hyperparameter delta to be used. 
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
            print(output.numpy())
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name)