test_layout_autotune.py 6.7 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
import os
import json
import tempfile
18
import unittest
19
import warnings
20
import numpy
21 22

import paddle
23
import paddle.nn.functional as F
24 25 26
from paddle.fluid.framework import _enable_legacy_dygraph

_enable_legacy_dygraph()
27 28 29


class SimpleNet(paddle.nn.Layer):
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, data_format="NCHW", class_num=2):
        super(SimpleNet, self).__init__()
        self.conv = paddle.nn.Conv2D(3, 8, (3, 3))
        self.bn = paddle.nn.BatchNorm(num_channels=8)
        self.relu = paddle.nn.ReLU()
        self.pool = paddle.nn.AvgPool2D(kernel_size=2, stride=2)
        self.flatten = paddle.nn.Flatten()
        self.fc = paddle.nn.Linear(392, class_num)

    def forward(self, image):
        conv_out = self.conv(image)
        bn_out = self.bn(conv_out)
        out = self.relu(bn_out)
        out = self.pool(out)
        out = self.flatten(out)
        out = self.fc(out)
        return conv_out, out


class LayoutAutoTune(unittest.TestCase):
51

52 53
    def use_autoune(self):
        if paddle.is_compiled_with_cuda():
54 55 56 57
            paddle.incubate.autotune.set_config(
                config={"layout": {
                    "enable": True
                }})
58 59
            return paddle.fluid.core.use_layout_autotune()
        else:
60 61 62 63 64 65
            config = {"layout": {"enable": False}}
            tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False)
            json.dump(config, tfile)
            tfile.close()
            paddle.incubate.autotune.set_config(tfile.name)
            os.remove(tfile.name)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            return paddle.fluid.core.use_layout_autotune()

    def train(self, data_format):
        model = SimpleNet(data_format="NCHW", class_num=2)
        data = paddle.rand([1, 3, 16, 16])
        if (data_format == "NHWC"):
            data = paddle.rand([1, 16, 16, 3])
        label_data = paddle.randint(0, 1, shape=[1, 1], dtype="int64")
        optimizer = paddle.optimizer.SGD(learning_rate=0.0001,
                                         parameters=model.parameters())
        scaler = paddle.amp.GradScaler()
        for i in range(2):
            with paddle.amp.auto_cast(level="O2"):
                conv_out, predict = model(data)
                loss = F.cross_entropy(predict, label=label_data)
                loss = loss.mean()

            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
        return conv_out, predict

    def test_enable_autotune(self):
        if self.use_autoune():
            conv_out, predict = self.train(data_format="NCHW")
            self.assertEqual(conv_out.shape, [1, 14, 14, 8])
            self.assertEqual(predict.shape, [1, 2])
        else:
            conv_out, predict = self.train(data_format="NCHW")
            self.assertEqual(conv_out.shape, [1, 8, 14, 14])
            self.assertEqual(predict.shape, [1, 2])

    def test_transpose_op_transposer(self):
        if not self.use_autoune():
            return
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        label_data = paddle.randint(0, 1, shape=[1, 1], dtype="int64")
        optimizer = paddle.optimizer.SGD(learning_rate=0.0001,
                                         parameters=conv.parameters())
        scaler = paddle.amp.GradScaler()
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
110
            # layout tuner will transpose conv_out to
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
            # [1, 8, 14, 12] with NCHW before the following transpose op.
            out = paddle.transpose(conv_out, perm=[0, 3, 1, 2])
            loss = out.mean()
        scaled = scaler.scale(loss)
        scaled.backward()
        scaler.minimize(optimizer, scaled)

        self.assertEqual(conv_out.shape, [1, 14, 12, 8])
        self.assertEqual(out.shape, [1, 12, 8, 14])

    def test_flatten_op_transposer(self):
        if not self.use_autoune():
            return
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            # layout tuner will transpose conv_out to
            # [1, 8, 14, 12] with NCHW before the following flatten op
            # because it flatten the C and H dimensions.
            out = flatten(conv_out)

        self.assertEqual(conv_out.shape, [1, 14, 12, 8])
        self.assertEqual(out.shape, [1, 112, 12])

138 139 140 141 142 143 144 145 146 147 148
    def test_argmax_op_transposer_keep_dims(self):
        if not self.use_autoune():
            return
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.argmax(conv_out, axis=1, keepdim=True)

        self.assertEqual(conv_out.shape, [1, 14, 12, 8])
149
        self.assertEqual(out.shape, [1, 14, 12, 1])
150 151 152 153 154 155 156 157 158 159 160 161 162 163

    def test_argmax_op_transposer(self):
        if not self.use_autoune():
            return
        conv = paddle.nn.Conv2D(3, 8, (3, 3))
        data = paddle.rand([1, 3, 16, 14])
        with paddle.amp.auto_cast(level="O2"):
            conv_out = conv(data)
            # conv_out.shape = [1, 14, 12, 8] with NHWC
            out = paddle.argmax(conv_out)

        self.assertEqual(conv_out.shape, [1, 14, 12, 8])
        self.assertEqual(out.shape, [1])

164

165
class TestAutoTuneAPI(unittest.TestCase):
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180
    def test_set_config_warnings(self):
        with warnings.catch_warnings(record=True) as w:
            config = {"layout": {"enable": 1}}
            # On linux, we can open the file again to read the content
            # without closing the file, but on windows system, there is
            # no permission to open it again without closing it.
            tfile = tempfile.NamedTemporaryFile(mode="w+", delete=False)
            json.dump(config, tfile)
            tfile.close()
            paddle.incubate.autotune.set_config(tfile.name)
            os.remove(tfile.name)
            self.assertTrue(len(w) == 1)


181 182
if __name__ == '__main__':
    unittest.main()