pybind.cc 47.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
52
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
53
#include "paddle/fluid/pybind/ir.h"
54 55
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
56
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
58

59
#include "paddle/fluid/string/to_string.h"
60

D
Dong Zhihong 已提交
61
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
62
#ifndef _WIN32
Y
Yi Wang 已提交
63
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
64
#endif
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
67 68
#endif

M
minqiyang 已提交
69 70
#include "pybind11/stl.h"

71 72 73 74
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
75 76 77
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

78
namespace paddle {
79
namespace pybind {
80
bool IsCompiledWithCUDA() {
81
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
82 83 84 85 86 87
  return false;
#else
  return true;
#endif
}

88
bool IsCompiledWithBrpc() {
89
#ifndef PADDLE_WITH_DISTRIBUTE
90 91
  return false;
#endif
92 93 94 95 96 97

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
98 99
}

Y
update  
Yancey1989 已提交
100
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
101
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
102 103 104 105 106 107
  return true;
#else
  return false;
#endif
}

108
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
109 110 111
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
112
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
113
  m.doc() = "C++ core of PaddlePaddle";
114

115 116 117 118
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

119
  BindException(&m);
Y
Yu Yang 已提交
120

S
sneaxiy 已提交
121
  m.def(
S
sneaxiy 已提交
122
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
123 124 125 126
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
127 128 129
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

M
minqiyang 已提交
130
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
131 132
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
133
      .def("_run_backward",
X
Xin Pan 已提交
134
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
135
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
136
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
137
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
138
      .def("_grad_ivar",
M
minqiyang 已提交
139
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
140
           py::return_value_policy::reference)
M
minqiyang 已提交
141
      .def("_copy_to",
P
Paddle CI 已提交
142
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
143 144 145 146 147
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
148
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
149
      .def("_copy_to",
P
Paddle CI 已提交
150
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
151 152 153 154 155
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
156
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
157
      .def("value", [](const imperative::VarBase &self) { return self.var_; },
M
minqiyang 已提交
158
           py::return_value_policy::reference)
159 160 161 162 163 164
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
165 166 167
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
X
Xin Pan 已提交
168
          [](const imperative::VarBase &self) { return self.IsStopGradient(); },
169
          [](imperative::VarBase &self, bool stop_gradient) {
X
Xin Pan 已提交
170
            self.SetStopGradient(stop_gradient);
171
          });
172

173
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
174 175 176 177 178 179 180 181
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
X
Xin Pan 已提交
182 183 184 185 186 187 188
          py::return_value_policy::reference)
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
189 190 191 192 193 194 195
          py::return_value_policy::reference)
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
196 197
          py::return_value_policy::reference);

X
Xin Pan 已提交
198
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
199
  layer.def(py::init<>())
X
Xin Pan 已提交
200 201 202
      .def("forward", [](imperative::Layer &self,
                         const std::vector<imperative::VarBase> &inputs) {
        return self.Forward(inputs);
X
Xin Pan 已提交
203
      });
X
Xin Pan 已提交
204

X
polish  
Xin Pan 已提交
205
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
206
      .def(py::init<>())
X
Xin Pan 已提交
207 208
      .def_static(
          "apply",
X
Xin Pan 已提交
209
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
210 211 212 213
              -> std::vector<imperative::VarBase *> {
                return imperative::PyLayer::Apply(func_id, inputs);
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
214 215 216 217 218
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
219

220 221
  BindTracer(&m);

222 223 224
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
225
      .def("_get_dims",
226
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
227
      .def("_set_dims",
Q
qijun 已提交
228
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
229
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
230
           })
Y
yuyang18 已提交
231
      .def("_set_layout",
D
dzhwinter 已提交
232 233 234
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
235
      .def("_alloc_float",
D
dzhwinter 已提交
236
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
237
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
238
           })
Y
yuyang18 已提交
239
      .def("_alloc_float",
Y
Yu Yang 已提交
240
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
241
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
242
           })
Y
yuyang18 已提交
243
      .def("_alloc_int",
Y
Yu Yang 已提交
244
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
245
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
246
           })
Y
yuyang18 已提交
247
      .def("_alloc_int",
D
dzhwinter 已提交
248
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
249
             self.mutable_data<int>(place);
Q
qijun 已提交
250
           })
Y
yuyang18 已提交
251
      .def("_alloc_int",
C
chengduoZH 已提交
252 253 254
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
255
      .def("_alloc_float",
C
chengduoZH 已提交
256 257 258
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
259 260
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
261
      .def("set", PyCPUTensorSetFromArray<double>)
262
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
263
      .def("set", PyCPUTensorSetFromArray<bool>)
264
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
265
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
266
      .def("set", PyCPUTensorSetFromArray<int8_t>)
267
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
268 269
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
270
      .def("set", PyCUDATensorSetFromArray<double>)
271
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
272
      .def("set", PyCUDATensorSetFromArray<bool>)
273
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
274
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
275
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
276 277 278 279 280 281
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
282
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
283
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
284
#endif
285
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
286 287 288 289
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
290
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
291

X
Xin Pan 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
305
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
306
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
307
     columns, hence [5, 2].
X
Xin Pan 已提交
308 309 310

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
311 312
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
336 337
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
338 339 340 341 342 343 344 345 346 347 348 349 350 351
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
352
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
353 354 355 356 357
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
358
      .def("set_lod",
359
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
360
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
361
             LoD new_lod;
362 363
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
364 365
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
366
             self.set_lod(new_lod);
D
dangqingqing 已提交
367
           })
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
393
      // Set above comments of set_lod.
394 395 396 397 398 399 400 401 402 403 404 405 406
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
407 408
      });

Q
qijun 已提交
409 410 411 412 413 414 415 416 417 418 419
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
420 421
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
422 423
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
424 425 426 427 428 429 430 431 432
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
433
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
434
      .def("rows", [](SelectedRows &self) {
435 436 437 438 439
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
440
      });
Q
qijun 已提交
441

442
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
443 444 445

All parameter, weight, gradient are variables in Paddle.
)DOC")
446
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
447
      .def("set_int",
448 449
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
450 451 452 453 454 455 456
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
457
      .def("get_tensor",
458 459
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
460 461
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
462 463 464
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
465 466 467 468 469
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
470 471 472
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
473
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
474 475 476 477 478
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
479
#endif
Y
Refine  
Yu Yang 已提交
480 481 482 483 484
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
485
           py::return_value_policy::reference);
486

Y
Refine  
Yu Yang 已提交
487
  py::class_<framework::ReaderHolder>(m, "Reader", "")
Q
Qiao Longfei 已提交
488
      .def("start", &framework::ReaderHolder::Start)
489
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
490

S
sneaxiy 已提交
491 492 493 494
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
495 496
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
497
      .def("push",
S
sneaxiy 已提交
498
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
499
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
500
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
501
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
502
           })
S
sneaxiy 已提交
503 504 505 506
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
507

S
sneaxiy 已提交
508
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
509 510 511 512 513 514
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
515
        py::return_value_policy::copy);
S
sneaxiy 已提交
516

S
sneaxiy 已提交
517
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
537 538
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
539
      .def("var",
540
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
541
             return self.Var(name);
Y
Yu Yang 已提交
542
           },
543
           py::return_value_policy::reference)
544
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
545
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
546
           py::return_value_policy::reference)
Y
Yu Yang 已提交
547
      .def("drop_kids", &Scope::DropKids);
548

S
sneaxiy 已提交
549 550 551 552 553 554 555 556
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
557 558
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
559 560
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
561 562 563 564 565 566 567 568 569 570
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
571 572
    return ret_values;
  });
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
589
  m.def("prune", [](const ProgramDesc &origin,
590
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
591
    ProgramDesc prog_with_targets(origin);
592
    for (const auto &t : targets) {
593
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
594
    }
595
    proto::ProgramDesc pruned_desc;
596
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
597
    return new ProgramDesc(pruned_desc);
598
  });
599 600 601 602
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
603 604 605
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
606 607
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
608
  // clang-format off
Y
Yu Yang 已提交
609
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
610 611
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
612
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
613 614 615
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
616
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
617
                      -> paddle::platform::DeviceContext* {
618
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
619
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
620
#else
Q
qijun 已提交
621
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
622
#endif
C
chengduoZH 已提交
623 624 625 626 627 628 629 630 631 632 633
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
634
// clang-format on
P
peizhilin 已提交
635
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
636 637
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
638
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
S
sneaxiy 已提交
639 640 641 642 643 644 645 646 647 648 649 650
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
D
dzhwinter 已提交
651
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
652

653 654 655
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
656

C
chengduoZH 已提交
657
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
S
sneaxiy 已提交
658 659 660 661 662 663
      .def("__init__",
           [](platform::CUDAPinnedPlace &) {
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
           })
C
chengduoZH 已提交
664 665
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
666 667 668 669 670 671 672
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
673
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
674
             self = gpu_place;
C
chengduoZH 已提交
675 676
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
677 678
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
679
      });
Y
Yu Yang 已提交
680

Y
Yu Yang 已提交
681 682 683
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
684
                    proto::OpDesc desc;
Y
Yu Yang 已提交
685 686 687 688 689
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
690
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
691
                  })
692
      .def("run",
693
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
694 695 696
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
697
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
698 699 700 701 702
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
703 704 705 706 707 708 709
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
710 711
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
712
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
713
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
714 715 716 717
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
718

F
fengjiayi 已提交
719
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
720
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
721
      .def("close", &Executor::Close)
S
sneaxiy 已提交
722 723 724 725 726
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
727

D
dzhwinter 已提交
728
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
729
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
730 731
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
732

733
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
734
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
735
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
736 737 738 739 740 741
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
742

743
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
744
  m.def("get_fetch_variable", framework::GetFetchVariable);
745
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
746

X
Xin Pan 已提交
747 748
  m.def("_is_program_version_supported", IsProgramVersionSupported);

749 750 751 752 753
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
754

Y
Yu Yang 已提交
755 756 757 758 759 760 761 762 763
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
764
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
765 766
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
783 784 785
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
786
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
787
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
788
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
789

P
peizhilin 已提交
790
#ifndef _WIN32
D
dangqingqing 已提交
791 792 793
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
794
#endif
P
peizhilin 已提交
795
#endif
Y
Yu Yang 已提交
796

797 798 799 800
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
801
      .value("kAll", platform::ProfilerState::kAll)
802 803 804 805 806 807 808 809 810 811 812 813 814
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
815
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
816
  m.def("reset_profiler", platform::ResetProfiler);
817
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
818 819 820
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
821

822 823
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
824
      .def("has", &ir::Pass::Has)
825 826 827
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
828
           })
829
      .def(
830
          "set",
831 832 833
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
834 835
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
836 837 838 839
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
        std::unique_ptr<ir::Graph> origin_graph(graph.get());
        auto optim_graph = self.Apply(std::move(origin_graph));
W
WangZhen 已提交
840
        optim_graph.release();
F
flame 已提交
841
      });
842

X
fix  
Xin Pan 已提交
843 844
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
845 846 847 848 849 850 851 852 853 854 855 856 857 858
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
859
  // -- python binds for parallel executor.
Y
yuyang18 已提交
860
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
861 862 863 864
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
865 866 867 868 869 870 871 872 873 874 875
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
876 877 878

        )DOC");

Y
yuyang18 已提交
879
  exec_strategy.def(py::init())
Y
yuyang18 已提交
880 881 882 883 884
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
885 886 887 888 889 890 891 892 893 894
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
895
      .def_property(
896 897 898 899
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
900 901 902 903
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
904 905 906 907 908
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
909 910 911 912
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
913 914 915 916 917 918 919
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
920 921 922 923 924 925 926 927 928 929 930
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
931 932 933 934 935 936
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
937

Y
yuyang18 已提交
938
  exec_strategy.def_property(
Y
yuyang18 已提交
939 940 941 942 943 944 945
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
946 947
      });

C
chengduo 已提交
948 949 950 951
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
952 953 954 955 956 957 958 959 960 961 962
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
963
)DOC");
Y
yuyang18 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
980
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
981
            self.reduce_ = strategy;
C
chengduo 已提交
982 983 984 985 986 987 988
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
989 990 991 992 993
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
994
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
995
            self.gradient_scale_ = strategy;
C
chengduo 已提交
996 997 998 999 1000 1001
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1002 1003 1004 1005
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1006
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1007
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1008 1009 1010 1011
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1012 1013 1014 1015 1016 1017
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1018
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1028
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1029 1030
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1031
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1032 1033 1034 1035 1036 1037
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1050 1051 1052 1053 1054 1055
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1056
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1057 1058 1059 1060 1061
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
                      Default False)DOC")
D
dzhwinter 已提交
1076 1077 1078 1079
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
1080 1081 1082 1083
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
D
dzhwinter 已提交
1084 1085 1086 1087
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1088
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1089
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1090 1091 1092 1093 1094
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1095 1096 1097

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1098
                  const std::string &, Scope *, std::vector<Scope *> &,
1099
                  const ExecutionStrategy &, const BuildStrategy &>())
Y
Yu Yang 已提交
1100 1101 1102 1103
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1104 1105 1106 1107 1108
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1109 1110 1111 1112
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1113 1114 1115 1116 1117 1118
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1119

1120
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1121
  BindAsyncExecutor(&m);
F
flame 已提交
1122 1123
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1124
  BindInferenceApi(&m);
L
Luo Tao 已提交
1125
}
1126
}  // namespace pybind
1127
}  // namespace paddle