warpctc_op.cc 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yiqun Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/warpctc_op.h"
Y
Yiqun Liu 已提交
16

H
Huihuang Zheng 已提交
17 18
#include <memory>

W
Wu Yi 已提交
19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

Y
Yiqun Liu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
namespace paddle {
namespace operators {

class WarpCTCOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) of WarpCTCOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of WarpCTCOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("WarpCTCGrad"),
                   "Output(WarpCTCGrad) of WarpCTCOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of WarpCTCOp should not be null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    int sequence_width =
        static_cast<int>(framework::product(logits_dims) / logits_dims[0]);
    int blank = ctx->Attrs().Get<int>("blank");
    PADDLE_ENFORCE((blank >= 0) && (blank < sequence_width),
                   "The value of Attr(blank) should be in interval [0, %d).",
                   sequence_width);
    // TODO(liuyiqun): it is tricky to set the wrong dimension here.
    ctx->SetOutputDim("Loss", {logits_dims[0], 1});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
W
Wu Yi 已提交
54 55 56 57 58 59 60
    framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
    }
#endif
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
Y
Yu Yang 已提交
61 62
    return framework::OpKernelType(ctx.Input<Tensor>("Logits")->type(),
                                   ctx.device_context(), layout_, library_);
Y
Yiqun Liu 已提交
63 64 65 66 67
  }
};

class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
68
  void Make() override {
Y
Yiqun Liu 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    AddInput("Logits",
             "(LodTensor, default: LoDTensor<float>), the unscaled "
             "probabilities of variable-length sequences, which is a 2-D "
             "Tensor with LoD information. It's shape is "
             "[Lp, num_classes + 1], where Lp is the sum of all input "
             "sequences' length and num_classes is the true number of classes "
             "(not including the blank label).");
    AddInput("Label",
             "(LodTensor, default: LoDTensor<int>), the ground truth "
             "of variable-length sequence, which is a 2-D Tensor with LoD "
             "information. It is of the shape [Lg, 1], where Lg is th sum of "
             "all labels' length.");
    AddOutput("WarpCTCGrad",
              "(Tensor, default: Tensor<float>), a temporary "
              "output Tensor to store the gradients of warp-ctc, which is "
              "computed with loss together in one call. It is a 3-D Tensor of "
              "the shape [max_sequence_length, batch_size, num_classes + 1].")
        .AsIntermediate();
    AddOutput("Loss",
              "(Tensor, default: Tensor<float>), the Connectionist "
              "Temporal Classification (CTC) loss, which is a 2-D Tensor of "
              "the shape [batch_size, 1]");
    AddAttr<int>("blank",
                 "(int, default: 0), the blank label of Connectionist "
                 "Temporal Classification (CTC) loss, which is in the "
                 "half-opened interval [0, num_classes + 1).")
        .SetDefault(0);
    AddAttr<bool>("norm_by_times",
                  "(bool, default: false), whether to "
                  "normalize the gradients by the number of time-step, "
                  "which is also the sequence's length.")
        .SetDefault(false);
W
Wu Yi 已提交
101 102 103 104
    AddAttr<bool>("use_cudnn",
                  "(bool, default: false), whether to "
                  "use cudnn kernel.")
        .SetDefault(false);
Y
Yiqun Liu 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    AddComment(R"DOC(
An operator integrating the open-source
[warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in
[Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin](
https://arxiv.org/pdf/1512.02595v1.pdf),
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with ctc, since a native softmax activation is
interated to the warp-ctc library, to to normlize values for each row of the
input tensor.

More detail of CTC loss can be found by refering to
[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks](
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf).
)DOC");
  }
};

H
Huihuang Zheng 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
class WarpCTCGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("warpctc_grad");

    op->SetInput("WarpCTCGrad", Output("WarpCTCGrad"));
    op->SetInput("Logits", Input("Logits"));
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));

    op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

Y
Yiqun Liu 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
class WarpCTCGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("WarpCTCGrad"),
                   "Input(WarpCTCGrad) of WarpCTCGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@GRAD) of WarpCTCGradOp should not be null.");
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Logits"));
    ctx->ShareLoD("Logits", /*->*/ framework::GradVarName("Logits"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
161 162
    return framework::OpKernelType(ctx.Input<Tensor>("Logits")->type(),
                                   ctx.device_context());
Y
Yiqun Liu 已提交
163 164 165 166 167 168 169
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
170
REGISTER_OPERATOR(warpctc, ops::WarpCTCOp, ops::WarpCTCOpMaker,
H
Huihuang Zheng 已提交
171
                  ops::WarpCTCGradOpDescMaker);
172
REGISTER_OPERATOR(warpctc_grad, ops::WarpCTCGradOp);
Y
Yiqun Liu 已提交
173 174 175 176 177
REGISTER_OP_CPU_KERNEL(
    warpctc, ops::WarpCTCKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    warpctc_grad,
    ops::WarpCTCGradKernel<paddle::platform::CPUDeviceContext, float>);