op_compat.yaml 19.5 KB
Newer Older
1
- op : abs
2 3 4 5
  backward : abs_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]

6 7 8 9 10
- op : acosh
  backward : acosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

11 12 13 14 15 16
- op : add (elementwise_add)
  backward : add_grad (elementwise_add_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

17
- op : addmm
18 19 20 21
  backward : addmm_grad
  extra :
    attrs : [bool use_mkldnn = false]

22
- op : affine_grid
23 24 25 26
  backward : affine_grid_grad
  extra :
    attrs : [bool use_cudnn = true]

27
- op : angle
28 29 30
  backward : angle_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]
31

32
- op : asinh
33 34 35 36
  backward : asinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

37
- op : atan2
38
  inputs :
39
    {x : X1, y : X2}
40 41 42
  outputs :
    out : Out

43
- op : atanh
44 45 46 47
  backward : atanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

48
- op : batch_norm
49 50 51 52
  backward : batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

53
- op : bernoulli
54 55 56 57 58
  inputs :
    x : X
  outputs :
    out : Out

59
- op : bicubic_interp (bicubic_interp_v2)
60 61 62 63
  backward : bicubic_interp_grad (bicubic_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

64
- op : bilinear_interp (bilinear_interp_v2)
65 66 67 68
  backward : bilinear_interp_grad (bilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

69
- op : ceil
70 71 72 73
  backward : ceil_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

74
- op : cholesky
75 76 77 78 79
  inputs :
    x : X
  outputs :
    out : Out

80
- op : cholesky_solve
81 82 83 84 85
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

86
- op : clip
87 88 89 90
  backward : clip_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

91
- op : concat
92 93 94 95
  backward : concat_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32"]

96 97 98 99 100
- op : conditional_block
  backward : conditional_block_grad
  extra :
    attrs : ['str[] skip_eager_deletion_vars = {}']

101
- op : conv2d
102
  backward : conv2d_grad
103
  extra :
104
    attrs : [bool is_test = false, bool use_cudnn = true, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
105
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
106
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
107 108
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
109
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]
110

111
- op : conv2d_fusion
F
Feiyu Chan 已提交
112
  extra :
113
    attrs : [bool is_test = false, bool use_cudnn = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
F
Feiyu Chan 已提交
114
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
115
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
F
Feiyu Chan 已提交
116 117
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
118 119
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

120
- op : conv2d_transpose
121 122 123 124 125 126 127
  backward : conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]

128
- op : conv3d
129 130 131 132 133 134 135
  backward : conv3d_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             bool use_addto = false, bool fuse_residual_connection = false, bool force_fp32_output = false,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

136
- op : conv3d_transpose
137 138 139
  backward : conv3d_transpose_grad
  extra :
    attrs : [bool use_cudnn = true, bool use_mkldnn = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
F
Feiyu Chan 已提交
140

141
- op : cos
142 143 144 145
  backward : cos_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

146
- op : cosh
147 148 149 150
  backward : cosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

151
- op : cross
152 153
  inputs :
    {x : X, y : Y}
154 155 156 157 158
  attrs :
    axis : dim
  outputs :
    out : Out

159
- op : data_norm
160 161 162 163
  backward : data_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

164
- op : depthwise_conv2d
165 166
  backward : depthwise_conv2d_grad
  extra :
167
    attrs : [bool is_test = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
168 169 170 171
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
172 173
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

174
- op : depthwise_conv2d_transpose
175 176 177 178 179 180
  backward : depthwise_conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = false, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
181

182
- op : diag (diag_v2)
183
  backward : diag_grad (diag_v2_grad)
184 185 186 187 188
  inputs :
    x : X
  outputs :
    out : Out

189
- op : diagonal
190 191 192 193 194
  inputs :
    x : Input
  outputs :
    out : Out

195
- op : digamma
196 197 198 199 200
  inputs :
    x : X
  outputs :
    out : Out

201
- op : dist
202 203 204 205 206
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

207 208 209 210 211 212
- op : divide (elementwise_div)
  backward : divide_grad (elementwise_div)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

213
- op : dot
214 215 216 217 218
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

219
- op : dropout
220 221 222 223
  backward : dropout_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

224
- op : dropout_nd
225 226 227 228
  backward : dropout_nd_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

229 230 231 232 233 234
- op : elementwise_pow
  backward : elementwise_pow_grad
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

235
- op : elu
236 237 238 239
  backward : elu_grad
  extra :
    attrs : [bool use_mkldnn = false]

240
- op : erf
241 242 243 244 245
  inputs :
    x : X
  outputs :
    out : Out

246
- op : erfinv
247 248 249 250 251
  inputs :
    x : X
  outputs :
    out : Out

252
- op : exp
253 254 255 256
  backward : exp_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

257 258 259 260 261
- op : expand (expand_v2)
  backward : expand_grad (expand_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

262
- op : expm1
263 264 265 266
  backward : expm1_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

267
- op : fft_c2c
268 269 270
  inputs: {x: X}
  outputs: {out: Out}

271
- op : fft_c2r
272 273 274
  inputs: {x: X}
  outputs: {out: Out}

275
- op : fft_r2c
276 277 278
  inputs: {x: X}
  outputs: {out: Out}

279 280 281 282 283
- op : floor
  backward : floor_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
- op : floor_divide (elementwise_floordiv)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmax (elementwise_fmax)
  backward : fmax_grad (elementwise_fmax_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmin (elementwise_fmin)
  backward : fmin_grad (elementwise_fmin_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

301
- op : frobenius_norm
302 303 304 305
  backward : frobenius_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

306 307 308 309 310 311 312 313 314
- op : full (fill_constant)
  extra :
    attrs : [bool use_mkldnn = false]

- op : gather
  backward : gather_grad
  extra :
    attrs : [bool overwrite = true]

315
- op : gelu
316 317 318 319
  backward : gelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool use_cudnn = false]

320 321 322 323 324
- op : grad_add
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

325
- op : grid_sampler
326 327 328 329
  backward : grid_sampler_grad
  extra :
    attrs : [bool use_cudnn = true]

330
- op : gru
331 332 333 334
  backward : gru_grad
  extra :
    attrs : [bool is_test = false]

335 336 337 338 339
- op : hard_swish
  backward : hard_swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

340 341 342 343 344 345
- op : heaviside (elementwise_heaviside)
  backward : heaviside_grad (elementwise_heaviside_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

346
- op : inplace_abn
347 348 349 350
  backward : inplace_abn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

351
- op : layer_norm
352 353 354 355
  backward : layer_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

356
- op : leaky_relu
357 358 359 360
  backward : leaky_relu_grad
  extra :
    attrs : [bool use_mkldnn = false]

361
- op : lgamma
362 363 364 365 366
  inputs :
    x : X
  outputs :
    out : Out

367
- op : linear_interp (linear_interp_v2)
368 369 370 371
  backward : linear_interp_grad (linear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

372
- op : log
373 374 375 376
  backward : log_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

377
- op : log10
378 379 380 381
  backward : log10_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

382
- op : log1p
383 384 385 386
  backward : log1p_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

387
- op : log2
388 389 390 391
  backward : log2_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

392
- op : log_softmax
393 394 395 396
  backward : log_softmax_grad
  extra :
    attrs : [bool use_mkldnn = false]

397
- op : logsigmoid
398 399 400 401
  backward : logsigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

402
- op : lrn
403 404 405 406
  backward : lrn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool is_test = false]

407
- op : matmul (matmul_v2)
408 409 410 411
  backward : matmul_grad (matmul_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, 'int[] fused_reshape_Out = {}', 'int[] fused_transpose_Out = {}',
             str mkldnn_data_type = "float32", 'int[] fused_reshape_X = {}', 'int[] fused_reshape_Y = {}',
412
             'int[] fused_transpose_X = {}', 'int[] fused_transpose_Y = {}']
413

414 415 416 417 418 419
- op : matmul_with_flatten (mul)
  backward : matmul_with_flatten_grad (mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, float scale_x = 1.0f, 'float[] scale_y = {1.0f}',
             float scale_out = 1.0f, bool force_fp32_output = false]

420 421 422 423 424 425 426 427 428 429 430 431
- op : maximum (elementwise_max)
  backward : maximum_grad (elementwise_max_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : maximum (elementwise_min)
  backward : maximum_grad (elementwise_min_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

432 433 434 435 436
- op : mish
  backward : mish_grad
  extra :
    attrs : [bool use_mkldnn = false]

437 438 439 440 441 442
- op : multiply (elementwise_mul)
  backward : multiply_grad (elementwise_mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

443
- op : mv
444 445 446 447 448
  inputs :
    {x : X, vec : Vec}
  outputs :
    out : Out

449
- op : nearest_interp (nearest_interp_v2)
450 451 452 453
  backward : nearest_interp_grad (nearest_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

454
- op : pad2d
455 456 457 458
  backward : pad2d_grad
  extra :
    attrs : [bool use_mkldnn = false]

459
- op : pad3d
460 461 462 463
  backward : pad3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

464
- op : partial_sum
465 466 467 468
  backward : partial_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

469
- op : poisson
470 471 472 473 474
  inputs :
    x : X
  outputs :
    out : Out

475 476 477 478 479 480 481 482 483 484 485
- op : pool2d
  backward : pool2d_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false,
              str mkldnn_data_type = "float32", bool is_test = false]

- op : pool3d
  backward : pool3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

486
- op : prelu
487 488 489 490
  backward : prelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

491
- op : reciprocal
492 493 494 495
  backward : reciprocal_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

496
- op : reduce_all
497 498 499
  extra :
    attrs : [bool use_mkldnn = false]

500
- op : reduce_amax
501 502 503 504
  backward : reduce_amax_grad
  extra :
    attrs : [bool use_mkldnn = false]

505
- op : reduce_amin
506 507 508 509
  backward : reduce_amin_grad
  extra :
    attrs : [bool use_mkldnn = false]

510
- op : reduce_any
511 512 513
  extra :
    attrs : [bool use_mkldnn = false]

514
- op : reduce_max
515 516 517 518
  backward : reduce_max_grad
  extra :
    attrs : [bool use_mkldnn = false]

519
- op : reduce_mean
520 521 522 523
  backward : reduce_mean_grad
  extra :
    attrs : [bool use_mkldnn = false]

524
- op : reduce_min
525 526 527 528
  backward : reduce_min_grad
  extra :
    attrs : [bool use_mkldnn = false]

529
- op : reduce_prod
530 531 532 533
  backward : reduce_prod_grad
  extra :
    attrs : [bool use_mkldnn = false]

534
- op : reduce_sum
535 536 537 538
  backward : reduce_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

539
- op : relu
540 541 542 543
  backward : relu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

544
- op : relu6
545 546 547 548
  backward : relu6_grad
  extra :
    attrs : [bool use_mkldnn = false]

549 550 551 552 553
- op : remainder (elementwise_mod)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

554
- op : renorm
555 556 557 558
  backward : renorm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

559 560 561 562 563 564
- op : rnn
  backward : rnn_grad
  extra :
    attrs : [bool is_test = false]

- op : round
565
  backward : round_grad
566
  extra :
567 568
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

569
- op : rsqrt
570 571 572
  backward : rsqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
573

574 575 576 577
- op : scale
  extra :
    attrs : [bool use_mkldnn = false]

578
- op : seed
579 580 581
  extra :
    attrs : [bool deterministic = false, str rng_name = "", bool force_cpu = false]

582
- op : shape
583 584 585
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

586
- op : shuffle_channel
587 588 589 590
  backward : shuffle_channel_grad
  extra :
    attrs : [bool use_mkldnn = false]

591
- op : sigmoid
592 593 594 595
  backward : sigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

596
- op : silu
597 598 599 600
  backward : silu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

601
- op : sin
602 603 604 605
  backward : sin_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

606
- op : sinh
607 608 609 610
  backward : sinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

611
- op : slice
612 613 614 615
  backward : slice_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

616
- op : softmax
617 618 619
  backward : softmax_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]
620

621
- op : softplus
622
  backward : softplus_grad
623
  extra :
624 625 626
    attrs : [bool use_mkldnn = false, bool use_cudnn = false, str fuse_activation_type = "", float fuse_activation_alpha = 0.0f,
             float fuse_activation_beta = 0.0f, float fuse_activation_scale = 1.0f]

627
- op : softsign
628 629 630
  backward : softsign_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
631

632
- op : solve
633 634 635 636 637
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

638
- op : sqrt
639 640 641 642
  backward : sqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

643
- op : square
644 645 646 647
  backward : square_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

648
- op : squeeze (squeeze2)
649 650 651 652
  backward : squeeze_grad (squeeze2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

653
- op : stack
654 655 656 657
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

658 659 660 661 662
- op : stack
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

663 664 665 666 667 668
- op : subtract (elementwise_sub)
  backward : subtract_grad (elementwise_sub_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

669
- op : swish
670 671 672 673
  backward : swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

674
- op : sync_batch_norm
675 676 677 678
  backward : sync_batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

679
- op : tan
680 681 682 683
  backward : tan_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

684
- op : tanh
685 686 687 688
  backward : tanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

689
- op : tanh_shrink
690 691 692 693
  backward : tanh_shrink_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

694
- op : trace
695 696 697 698
  inputs :
    x : Input
  outputs :
    out : Out
699

700 701 702 703 704 705
- op : transpose (transpose2)
  backward : transpose_grad (transpose2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str data_format = "AnyLayout", bool use_quantizer = false,
              str mkldnn_data_type = "float32"]

706
- op : trilinear_interp (trilinear_interp_v2)
707 708 709 710
  backward : trilinear_interp_grad (trilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

711
- op : trunc
712 713 714 715
  inputs :
    x : X
  outputs :
    out : Out
716

717 718
- op : while
  backward : while_grad
719
  extra :
720
    attrs : ['str[] skip_eager_deletion_vars = {}']