concat_mkldnn_op.cc 8.9 KB
Newer Older
M
Michal Gallus 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/concat_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::concat;
using mkldnn::stream;
using platform::to_void_cast;

// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
static std::string gethash(const memory::dims& input_dims,
                           const std::string& pooling_type,
                           const std::vector<int>& ksize,
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& suffix) {
  auto dims2str = [](const memory::dims& operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
         dims2str(paddings) + pooling_type + suffix;
}

static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
  for (auto* input : inputs) {
    const bool is_layout_correct = input->layout() == DataLayout::kMKLDNN;
    const bool is_format_defined = input->format() !=
                                   memory::format::format_undef;
    PADDLE_ENFORCE(is_layout_correct && is_format_defined,
                   "Wrong layout/format set for Input tensor");
  }
}

static memory::primitive_desc CreateMemPrimDesc(
    const framework::Tensor& input, const mkldnn::engine& engine) {
  constexpr auto data_type = mkldnn::memory::f32;
  const auto dims = paddle::framework::vectorize2int(input.dims());
  const auto format = input.format();
  auto description = memory::desc(dims, data_type, format);
  auto mem_prim_desc = memory::primitive_desc(description, engine);
  return mem_prim_desc;
}

static platform::CPUPlace GetCpuPlace(
    const paddle::framework::ExecutionContext& ctx) {
  auto place = ctx.GetPlace();
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(place),
                 "It must use CPUPlace.");
  return boost::get<platform::CPUPlace>(place);
}

template <typename T>
class ConcatMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto place = GetCpuPlace(ctx);
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto multi_input = ctx.MultiInput<framework::Tensor>("X");
    framework::Tensor* output = ctx.Output<framework::Tensor>("Out");
    int64_t concat_axis = static_cast<int64_t>(ctx.Attr<int>("axis"));

    EnforceLayouts(multi_input);

    std::vector<memory::primitive_desc> srcs_pd;
    std::vector<memory> srcs;
    for (size_t i = 0; i < multi_input.size(); i++) {
        auto mem_prim_desc = CreateMemPrimDesc(*multi_input[i], mkldnn_engine);
        srcs_pd.push_back(mem_prim_desc);
        srcs.push_back(memory(mem_prim_desc, to_void_cast(multi_input[i]->data<T>())));
    }
    auto dst_dims = paddle::framework::vectorize2int(output->dims());
    auto dst_desc = memory::desc(dst_dims, mkldnn::memory::f32, memory::format::any);
    auto concat_pd = concat::primitive_desc(dst_desc, static_cast<int>(concat_axis), srcs_pd);
    auto dst_mem = memory(concat_pd.dst_primitive_desc(), output->mutable_data<T>(place));

    std::vector<primitive::at> inputs; //= {srcs};
    inputs.reserve(srcs.size());
    for (size_t i = 0; i < srcs.size(); i++) {
      inputs.push_back(srcs[i]);
    }
    auto concat_prim = concat(concat_pd, inputs, dst_mem);

    std::vector<primitive> pipeline;
    pipeline.push_back(concat_prim);
    stream(stream::kind::eager).submit(pipeline).wait(); // TODO(mgallus): When this is not workin' split into decl and def

    /*
    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    auto input_format = input->format();
    memory::format output_format{memory::format::format_undef};

    const std::string key = gethash(src_tz, pooling_type, ksize, strides,
                                    paddings, ctx.op().Output("Out"));
    const std::string key_pool_p = key + "@pool_p";
    const std::string key_pool_pd = key + "@pool_pd";
    const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
    const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
    const std::string key_pool_workspace_memory =
        key + "@pool_workspace_memory";

    auto pool_p =
        std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
    if (pool_p == nullptr) {
      const std::vector<int>& padding_left_top(paddings);
      std::vector<int> padding_right_bottom(paddings);
      bool ceil_mode = ctx.Attr<bool>("ceil_mode");
      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          padding_right_bottom);
      }
      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), input_format);

      auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
                                            mkldnn::memory::format::any);

      std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
          CreatePrimitiveDesc(src_md, dst_md, strides, padding_left_top,
                              padding_right_bottom, ksize, pooling_type,
                              mkldnn_engine, ceil_mode, is_test);

      // save pool_pd into global device context to be referred in backward path
      if (!is_test) dev_ctx.SetBlob(key_pool_pd, pool_pd);

      auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
                                                 to_void_cast<T>(input_data));
      auto dst_memory =
          std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);

      dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
      dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);

      if (is_test) {
        pool_p = std::make_shared<pooling_forward>(*pool_pd, *src_memory,
                                                   *dst_memory);
      } else {
        std::shared_ptr<mkldnn::memory> workspace_memory =
            CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);

        // save pool_workspace_memory to be referred in backward path
        dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);

        pool_p = std::make_shared<pooling_forward>(
            *pool_pd, *src_memory, *dst_memory, *workspace_memory);
      }

      dev_ctx.SetBlob(key_pool_p, pool_p);

      output_format =
          (memory::format)dst_memory->get_primitive_desc().desc().data.format;
    } else {
      // Primitives already exist
      auto pool_src_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
      PADDLE_ENFORCE(pool_src_memory_p != nullptr,
                     "Fail to find pooling src mem_p in device context");
      auto pool_dst_memory_p =
          std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
      PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
                     "Fail to find pooling dst mem_p in device context");
      pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      pool_dst_memory_p->set_data_handle(output_data);

      output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
                          .desc()
                          .data.format;
    }

    // push primitive to stream and wait until it's executed
    std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
    stream(stream::kind::eager).submit(pipeline).wait();
    */
    output->mutable_data(place);
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format((memory::format)dst_mem.get_primitive_desc().desc()
                                              .data.format);
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(concat, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConcatMKLDNNOpKernel<float>)