split_op_plugin.cu 6.7 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

H
hjchen2 已提交
15 16
#include <cuda_fp16.h>
#include <algorithm>
N
nhzlx 已提交
17 18 19 20 21
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
22
namespace plugin {
N
nhzlx 已提交
23

H
hjchen2 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
// copied from operators::math::SplitFunctor
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
                            const int in_col, const int* out_cols,
                            int out_cols_size, T** outputs_data) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  int curr_segment = 0;
  int curr_offset = out_cols[0];
  for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
    int curr_col_offset = out_cols[curr_segment + 1];
    while (curr_col_offset <= tid_x) {
      curr_offset = curr_col_offset;
      ++curr_segment;
      curr_col_offset = out_cols[curr_segment + 1];
    }

    int local_col = tid_x - curr_offset;
    int segment_width = curr_col_offset - curr_offset;
    T* output_ptr = outputs_data[curr_segment];
    if (output_ptr != nullptr) {
      int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
      for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
        output_ptr[tid_y * segment_width + local_col] =
            input_data[tid_y * in_col + tid_x];
    }
  }
}

template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
                            const int in_col, const int fixed_out_col,
                            T** outputs_data) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
    int split = tid_x / fixed_out_col;
    int in_offset = tid_x - split * fixed_out_col;
    T* output_ptr = outputs_data[split];
    if (output_ptr != nullptr) {
      int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
      for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
        output_ptr[tid_y * fixed_out_col + in_offset] =
            input_data[tid_y * in_col + tid_x];
    }
  }
}

70 71 72 73 74 75
nvinfer1::Dims SplitPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims* input_dims, int num_inputs) {
  PADDLE_ENFORCE_EQ(num_inputs, 1);
  PADDLE_ENFORCE_LT(index, this->getNbOutputs());

  nvinfer1::Dims output_dims = input_dims[0];
76
  output_dims.d[axis_] = output_length_.at(index);
N
nhzlx 已提交
77 78 79 80
  return output_dims;
}

int SplitPlugin::initialize() {
81
  PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
H
hjchen2 已提交
82 83 84 85 86 87 88 89 90 91 92
  // notice input dims is [C, H, W]
  nvinfer1::Dims dims = this->getInputDims(0);
  outer_rows_ = 1;
  inner_cols_ = 1;
  for (int i = 0; i < axis_; ++i) {
    outer_rows_ *= dims.d[i];
  }
  for (int i = axis_ + 1; i < dims.nbDims; ++i) {
    inner_cols_ *= dims.d[i];
  }
  same_shape_ = true;
N
nhzlx 已提交
93 94
  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); ++i) {
H
hjchen2 已提交
95 96 97 98 99
    if (output_length_[i] != output_length_[0]) {
      same_shape_ = false;
    }
    segment_offsets.push_back(segment_offsets.back() +
                              output_length_[i] * inner_cols_);
N
nhzlx 已提交
100
  }
H
hjchen2 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  inner_cols_ *= dims.d[axis_];
  d_segment_offsets_ = segment_offsets;
  segment_offsets_ = std::move(segment_offsets);
  d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
  return 0;
}

template <typename T>
inline void Split(cudaStream_t stream, const bool same_shape,
                  const int outer_rows, const int inner_cols,
                  const std::vector<int>& segment_offsets,
                  const int* d_segment_offsets, const T* input, T** outputs) {
  const int kThreadsPerBlock = 1024;
  const int kMaxBlocks = 65535;
  int block_cols = kThreadsPerBlock;
  if (inner_cols < kThreadsPerBlock) {  // block_cols is aligned by 32.
    block_cols = ((inner_cols + 31) >> 5) << 5;
N
nhzlx 已提交
118
  }
H
hjchen2 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  int block_rows = kThreadsPerBlock / block_cols;
  dim3 block_size = dim3(block_cols, block_rows, 1);

  int grid_cols =
      std::min((inner_cols + block_cols - 1) / block_cols, kMaxBlocks);
  int grid_rows =
      std::min(kMaxBlocks / grid_cols, std::max(outer_rows / block_rows, 1));
  dim3 grid_size = dim3(grid_cols, grid_rows, 1);

  if (same_shape) {
    SplitKernel<<<grid_size, block_size, 0, stream>>>(
        input, outer_rows, inner_cols, segment_offsets[1], outputs);
  } else {
    SplitKernel<<<grid_size, block_size, 0, stream>>>(
        input, outer_rows, inner_cols, d_segment_offsets,
        static_cast<int>(segment_offsets.size()), outputs);
N
nhzlx 已提交
135 136 137 138 139
  }
}

int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
                         void** outputs, void* workspace, cudaStream_t stream) {
H
hjchen2 已提交
140
  float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
H
hjchen2 已提交
141 142
  if (((batchSize == 1 && axis_ == 0) || axis_ == -1) &&
      this->getNbOutputs() < 10) {
H
hjchen2 已提交
143 144
    float** output_ptrs = reinterpret_cast<float**>(outputs);
    int data_type_size = (this->getDataType() == nvinfer1::DataType::kFLOAT)
H
hjchen2 已提交
145 146
                             ? sizeof(float)
                             : sizeof(__half);
H
hjchen2 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    for (int i = 0; i < this->getNbOutputs(); ++i) {
      PADDLE_ENFORCE(
          cudaMemcpyAsync(
              output_ptrs[i], input_ptr + segment_offsets_[i],
              (segment_offsets_[i + 1] - segment_offsets_[i]) * data_type_size,
              cudaMemcpyDeviceToDevice, stream) == cudaSuccess);
    }
  } else {
    outer_rows_ *= batchSize;
    const int* d_segment_offsets_ptr =
        thrust::raw_pointer_cast(&d_segment_offsets_[0]);
    float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
    PADDLE_ENFORCE(cudaMemcpyAsync(output_ptrs, outputs,
                                   this->getNbOutputs() * sizeof(float*),
                                   cudaMemcpyHostToDevice,
                                   stream) == cudaSuccess);
    if (this->getDataType() == nvinfer1::DataType::kFLOAT) {
      Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
            d_segment_offsets_ptr, input_ptr, output_ptrs);
    } else {
      Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
            d_segment_offsets_ptr, (__half*)input_ptr,  // NOLINT
            (__half**)output_ptrs);                     // NOLINT
170 171
    }
  }
N
nhzlx 已提交
172 173 174
  return cudaGetLastError() != cudaSuccess;
}

175 176 177 178
}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle