ModelConfig.proto.m4 16.5 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
ifdef(`proto3', `syntax = "proto2";')
Z
zhangjinchao01 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

import "ParameterConfig.proto";

package paddle;

/**
 * Various structs for the configuration of a neural network
 */
sinclude(`ModelConfigExt.proto.m4')

message ExternalConfig {
  repeated string layer_names = 1;
  repeated string input_layer_names = 2;
  repeated string output_layer_names = 3;
}

message ActivationConfig {
  // identity: f(x) = x
  // sigmoid: f(x) = 1 / (1 + exp(-x))
  // logistic: f(x) = (1 - exp(-x)) / (1+ exp(-x))
  // softmax: y_i = f(x_i) = exp(x_i) / (\sum_i exp(x_i))
  // relu: y = max(0, x)
  required string type = 1;
};

message ConvConfig {
  // filter_size = 5, says that this layer will use
  // filters of size 5x5 pixels.
  required uint32 filter_size = 1;

  // The image data dimensionality.
  // This value must be either 1, 2, 3, or a multiple of 4.
  required uint32 channels = 2;

  // stride = 1, indicates that the distance between
  // successive filter applications should be 1 pixel.
  required uint32 stride = 3;

  // padding = 4, instructs the net to implicitly
  // pad the images with a 4-pixel border of zeros.
  required uint32 padding = 4;

  // If groups = 4 together with the filters = 32 parameter,
  // they state that this convolutional layer is to have 4
  // groups of 32 filters. Each filter will connect to 8
  // input channels.
  required uint32 groups = 5;
  required uint32 filter_channels = 6;

  // The size of output feature map.
  required uint32 output_x = 7;

  // The size of input feature map.
  required uint32 img_size = 8;

  // caffe mode for output size coherence
  required bool caffe_mode = 9 [default = true];

  // if filter_size_y is set , this convolutional layer will use
  // filters of size filter_size * filter_size_y pixels.
  // if filter_size_y is not set, this convolutional layer will use
  // filters of size filter_size * filter_size
  required uint32 filter_size_y = 10;
  required uint32 padding_y = 11;
  required uint32 stride_y = 12;
L
Luo Tao 已提交
80 81

  // if not set, use output_x
L
Luo Tao 已提交
82
  optional uint32 output_y = 13;
L
Luo Tao 已提交
83 84

  // if not set, use img_size
L
Luo Tao 已提交
85
  optional uint32 img_size_y = 14;
Z
zhangjinchao01 已提交
86 87 88 89 90 91 92 93 94 95 96 97
}

message PoolConfig {
  // max or avg pooling
  required string pool_type = 1;
  required uint32 channels = 2;

  // Defines the size of the pooling region in
  // the x (equivalently, y) dimension.
  required uint32 size_x = 3;

  // Tell the net where in the input image to start the pooling.
98 99
  // start is deprecated now.
  optional uint32 start = 4;
Z
zhangjinchao01 已提交
100 101

  // Defines the stride size between successive pooling squares.
D
dangqingqing 已提交
102
  required uint32 stride = 5 [default = 1];
Z
zhangjinchao01 已提交
103 104 105 106 107 108 109 110 111 112 113 114

  // The size of output feature map.
  required uint32 output_x = 6;

  // The size of input feature map.
  required uint32 img_size = 7;

  // padding = 4, instructs the net to implicitly
  // pad the images with a 4-pixel border of zeros.
  optional uint32 padding = 8 [default = 0];

  // if not set, use size_x
D
dangqingqing 已提交
115
  optional uint32 size_y = 9;
Z
zhangjinchao01 已提交
116 117

  // if not set, use stride
D
dangqingqing 已提交
118
  optional uint32 stride_y = 10;
Z
zhangjinchao01 已提交
119 120

  // if not set, use output_x
D
dangqingqing 已提交
121
  optional uint32 output_y = 11;
Z
zhangjinchao01 已提交
122 123

  // if not set, use img_size
D
dangqingqing 已提交
124
  optional uint32 img_size_y = 12;
Z
zhangjinchao01 已提交
125 126

  // if not set, use padding
D
dangqingqing 已提交
127
  optional uint32 padding_y = 13;
Z
zhangjinchao01 已提交
128 129
}

Q
qijun 已提交
130
message SppConfig {
L
Luo Tao 已提交
131 132 133
  required ImageConfig image_conf = 1;
  required string pool_type = 2;
  required uint32 pyramid_height = 3;
Q
qijun 已提交
134 135
}

Z
zhangjinchao01 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
message NormConfig {
  // rnorm or cmrnorm
  required string norm_type = 1;
  required uint32 channels = 2;

  // rnorm: this defines the size of the local regions
  // used for response normalization.
  // cmrnorm: The size parameter indicates how many
  // nearby maps to use for normalization.
  required uint32 size = 3;

  // the parameters for normalization
  // u = u / (1+scale*sum(u^2 in window))^pow
  required real scale = 4;
  required real pow = 5;

  // The size of output feature map.
  required uint32 output_x = 6;

  // The size of input feature map.
  required uint32 img_size = 7;

  // normalize with fixed window or sliding window
  // u = u / (1+scale*sum(u^2 in window))^pow
  // fixed window: shared a fixed window for each value
  // sliding window: have a different window for each value
  optional bool blocked = 8;
L
Luo Tao 已提交
163 164

  // if not set, use output_x
L
Luo Tao 已提交
165
  optional uint32 output_y = 9;
L
Luo Tao 已提交
166 167

  // if not set, use img_size
L
Luo Tao 已提交
168
  optional uint32 img_size_y = 10;
Z
zhangjinchao01 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
}

message BlockExpandConfig {
  required uint32 channels = 1;

  required uint32 stride_x = 2;
  required uint32 stride_y = 3;

  required uint32 padding_x = 4;
  required uint32 padding_y = 5;

  required uint32 block_x = 6;
  required uint32 block_y = 7;

  // The size of output feature map.
  required uint32 output_x = 8;
  required uint32 output_y = 9;

  // The size of input feature map.
  required uint32 img_size_x = 10;
  required uint32 img_size_y = 11;
}

192
message MaxOutConfig {
L
Luo Tao 已提交
193
  required ImageConfig image_conf = 1;
194 195 196
  required uint32 groups = 2;
}

Z
zhangjinchao01 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
message ProjectionConfig {
  required string type = 1;
  required string name = 2;
  required uint64 input_size = 3;
  required uint64 output_size = 4;

  // For ShiftProjection
  optional int32 context_start = 5;
  optional int32 context_length = 6;
  optional bool trainable_padding = 7 [default = false];

  // For convolution
  optional ConvConfig conv_conf = 8;
  optional int32 num_filters = 9;

  // For IdentityOffsetProjection
  optional uint64 offset = 11 [default = 0];
Q
qijun 已提交
214 215 216

  // For pool
  optional PoolConfig pool_conf = 12;
Z
zhangjinchao01 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
}

message OperatorConfig {
  required string type = 1;
  repeated int32 input_indices = 2;
  repeated uint64 input_sizes = 3;
  required uint64 output_size = 4;

  // For DotMulOperator
  optional real dotmul_scale = 5 [default = 1.0];

  // For ConvOperator
  optional ConvConfig conv_conf = 6;
  optional int32 num_filters = 7;
}

L
liaogang 已提交
233
message BilinearInterpConfig {
L
liaogang 已提交
234
  // The size of input feature map.
L
Luo Tao 已提交
235
  required ImageConfig image_conf = 1;
L
liaogang 已提交
236
  // The size of output feature map.
L
Luo Tao 已提交
237 238
  required uint32 out_size_x = 2;
  required uint32 out_size_y = 3;
L
liaogang 已提交
239
}
Z
zhangjinchao01 已提交
240 241 242 243 244 245 246 247

message ImageConfig {
  // The image data dimensionality.
  // This value must be either 1, 2, 3, or a multiple of 4.
  required uint32 channels = 2;

  // The size of input feature map.
  required uint32 img_size = 8;
L
Luo Tao 已提交
248
  required uint32 img_size_y = 9;
Z
zhangjinchao01 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
}

message LayerInputConfig {
  required string input_layer_name = 1;
  optional string input_parameter_name = 2;
  optional ConvConfig conv_conf = 3;
  optional PoolConfig pool_conf = 4;
  optional NormConfig norm_conf = 5;
  optional ProjectionConfig proj_conf = 6;
  optional BlockExpandConfig block_expand_conf = 7;
  optional ImageConfig image_conf = 8;
  // If the input layer has multi-output.
  // Set the argument name.
  optional string input_layer_argument = 9;
L
liaogang 已提交
263
  optional BilinearInterpConfig bilinear_interp_conf = 10;
L
liaogang 已提交
264
  optional MaxOutConfig maxout_conf = 11;
Q
qijun 已提交
265
  optional SppConfig spp_conf = 12;
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
}

message LayerConfig {
sinclude(`ModelConfigLayer.proto.m4')
  required string name = 1;
  required string type = 2;
  optional uint64 size = 3;
  //optional ActivationConfig activation = 4;
  optional string active_type = 4;
  repeated LayerInputConfig inputs = 5;
  optional string bias_parameter_name = 6;

  // This number must be a multiple of 16.
  optional uint32 num_filters = 7;

  // indicates that the biases of every filter in this layer
  // should be shared amongst all applications of that filter
  // (which is how convnets are usually trained). Setting this to
  // false will untie the biases, yielding a separate bias for
  // every location at which the filter is applied.
286
  optional bool shared_biases = 8 [default = false];
Z
zhangjinchao01 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

  // Valid values are ones that divide the area of the output
  // grid in this convolutional layer. For example if this layer
  // produces 32-channel 20x20 output grid, valid values of
  // partialSum are ones which divide 20*20 = 400.
  // I'll update this comments when confirmed
  optional uint32 partial_sum = 9;

  // for dropout
  optional real drop_rate = 10;

  // for HierarchicalSoftmaxLayer and NCELayer
  // the number of classes
  optional uint32 num_classes = 11;

  // the gpu device which the Layer's data in.
  // Only used by ParallelNeuralNetork. Ignored otherwise.
  optional int32 device = 12 [default = -1];

  // for recurrent layer. If true, the recurrence runs from the end to the beginning.
  optional bool reversed = 13 [default = false];

  // for lstmemory layer. Different types of nodes have different activation type.
  optional string active_gate_type  = 14;
  optional string active_state_type = 15;

  // For NCELayer
  // The number of random negative labels for each sample
  optional int32 num_neg_samples = 16 [default = 10];

  // For NCELayer
  // The distribution for generating the random negative labels.
  // A uniform distribution will be used if not provided
  repeated real neg_sampling_dist = 17 [packed = true];

  // For MaxLayer
  // default: output VALUE of MaxLayer. set this flag to true for output INDEX
  // INDEX will be put in Argument::value as real values.
  optional bool output_max_index = 19 [default = false];

  /// The filed number 20 have been deprecated.

  // For self-normalized estimation
  optional real softmax_selfnorm_alpha = 21 [default = 0.1];

  /// The filed numbers 22 and 23 have been deprecated.

  // for MDLstmLayer
  repeated bool directions = 24;

  // for CTCLayer
  optional bool norm_by_times = 25;

  // for CostLayers
341
  optional real coeff = 26 [default = 1.0];
Z
zhangjinchao01 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

  // for AverageLayer
  // can be set to: 'average', 'sum' or 'squarerootn'
  optional string average_strategy = 27;

  // for error clipping
  optional real error_clipping_threshold = 28 [default = 0.0];

  // for operators used by mixed layer
  repeated OperatorConfig operator_confs = 29;

  // for lambdaCost
  optional int32 NDCG_num = 30;
  optional int32 max_sort_size = 31;

  // for SlopeInterceptLayer
  optional real slope = 32;
  optional real intercept = 33;

  // for CosSimVecMatLayer and CosSimLayer
  optional real cos_scale = 34;

  // for DataNormLayer
  // can be set to: 'z-score', 'min-max' or 'decimal-scaling'
  optional string data_norm_strategy = 36;

  // for bos/eos id
  optional uint32 bos_id = 37;
  optional uint32 eos_id = 38;

  // for max id layer
  optional uint32 beam_size = 39;

  // for seqlastins layer, whether select first instead last
  optional bool select_first = 40 [default = false];

  // for seqlastins layer, AverageLayer, MaxLayer and ExpandLayer
  // can be set to: 'non-seq','seq'
  optional string trans_type = 41 [default = 'non-seq'];

  // to indicate whether selective_fc layer
  // is used in sequence generation or not
  optional bool selective_fc_pass_generation = 42 [default = false];

  // to indicate whether selective_fc layer take its last input to
  // selected several columns and only compute the multiplications
  // between the input matrices and the selected columns of
  // the parameter matrices of this layer.
  // if set false, selective_fc degrades into fc.
  optional bool has_selected_colums = 43 [default = true];

  // this parameter is for speed consideration.
  // if number of the selected columns is less than
  // sample number * selective_fc output size * selective_fc_mull_mull_ratio
  // sparse multiplication is used, otherwise, using full multiplication.
  optional real selective_fc_full_mul_ratio = 44 [default = 0.02];

  // to indicate how many threads selective_fc use to to accelate
  // the plain_mul period
  // leave empty or set to 0 to disable multi-thread accleleration
  optional uint32 selective_fc_parallel_plain_mul_thread_num = 45 [default = 0];

  // for batch normalization layer
  // if set use_global_stats true, will use the loaded mean and variance.
  optional bool use_global_stats = 46;

  // use to compute moving mean and variance.
  optional real moving_average_fraction = 47 [default = 0.9];
410 411 412

  // bias size
  optional uint32 bias_size = 48 [default = 0];
H
Haichao-Zhang 已提交
413 414 415 416 417 418 419 420

  // this parameter can be used as a user-defined parameter when necessary, 
  // without changing the proto file.
  // e.g., when a new layer with a user-defined parameter is implemented, 
  // it can be used to pass that parameter, without modifying the proto file.
  // string type is used for flexibility: different types can be converted
  // to string and reinterpreted in the user's own layer implementation.  
  optional string user_arg = 49;
L
Luo Tao 已提交
421 422 423 424
  
  // to indicate rectangle image data
  optional uint64 height = 50;
  optional uint64 width = 51;
H
Haichao-Zhang 已提交
425

L
Liu Yiqun 已提交
426 427
  // blank label used in ctc loss
  optional uint32 blank = 52 [default = 0];
Z
zhangjinchao01 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
}

message EvaluatorConfig {
  required string name = 1;
  required string type = 2;
  repeated string input_layers = 3;

  // Used by ChunkEvaluator
  optional string chunk_scheme = 4; // one of "IOB", "IOE", "IOBES"
  optional int32 num_chunk_types = 5; // number of chunk types other than "other"

  // Used by PrecisionRecallEvaluator and ClassificationErrorEvaluator
  // For multi binary labels: true if output > classification_threshold
  optional real classification_threshold = 6 [default = 0.5];
  // The positive label. -1 means average precision and recall
  optional int32 positive_label = 7 [default = -1];

  // load dict from this file
  optional string dict_file = 8;

  // dump result in this file
  optional string result_file = 9;

  // top # results for max id printer
  optional int32 num_results = 10 [default = 1];

  // whether to delimit the sequence in the seq_text_printer
  optional bool delimited = 11 [default = true];
}

message LinkConfig {
  required string layer_name = 1;
  required string link_name = 2;
  // If true, this link has sub-sequence
  optional bool has_subseq = 3 [default = false];
}

message MemoryConfig {
  required string layer_name = 1;
  required string link_name = 2;

  optional string boot_layer_name = 3;
  optional string boot_bias_parameter_name = 4;
  optional string boot_bias_active_type = 5;
  optional uint32 boot_with_const_id = 7;

  // memory is a sequence, initailized by a sequence boot layer
  optional bool is_sequence = 6 [default = false];
}

message GeneratorConfig {
  required uint32 max_num_frames = 1;
  required string eos_layer_name = 2;
  optional int32 num_results_per_sample = 3 [default = 1];

  // for beam search
  optional int32 beam_size = 4 [default = 1];

  optional bool log_prob = 5 [default = true];
}

message SubModelConfig {
  required string name = 1;
  repeated string layer_names = 2; // selected layers in sub model
  repeated string input_layer_names = 3;
  repeated string output_layer_names = 4;
  repeated string evaluator_names = 5;

  optional bool is_recurrent_layer_group = 6 [default = false];

  // If true, the recurrence runs from the end to the beginning.
  optional bool reversed = 7 [default = false];

  // name and link name of memory
  repeated MemoryConfig memories = 8;

  // if use recurrent layer group, all layers in submodel will postfix by
  // "_in_"+submodel.name, so we add a name pair to link between
  // root model and layer group,
  // note that these in/out layers are not input/output of the network.
  repeated LinkConfig in_links = 9;
  repeated LinkConfig out_links = 10;

  optional GeneratorConfig generator = 11;
512 513 514

  // the id of inlink which share info with outlinks, used in recurrent layer group
  optional int32 target_inlinkid = 12;
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
}

message ModelConfig {
  // type of the model.
  // Currently, "nn", "recurrent_nn" and "recursive_nn" are supported
  required string type = 1 [default = "nn"];

  // layers should be ordered in such a way that the forward propagation
  // can be correctly executed by going from the first layer to the last layer
  repeated LayerConfig layers = 2;

  repeated ParameterConfig parameters = 3;

  // Input layers should have the same order as the data streams provided
  // by the data provider. The type of input layers should be "data"
  repeated string input_layer_names = 4;

  // For training, the type of a output layer is usually cost layer.
  // For prediction, they should be the actual output layers.
  repeated string output_layer_names = 5;

  repeated EvaluatorConfig evaluators = 6;

  repeated SubModelConfig sub_models = 8;

  // For External Machine, defining how to split a neural network
  // into multiple parts.
  optional ExternalConfig external_config = 9;
};