math_kernel.cu 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/math_kernel.h"
16

17 18 19 20
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/gpu/elementwise.h"
#include "paddle/phi/kernels/gpu/reduce.h"
21 22 23 24 25 26 27 28 29

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

30 31 32 33 34
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
35

36
namespace phi {
37

38 39
#define DEFINE_CUDA_ELEMENTWISE_OP(name)                             \
  template <typename T, typename Context>                            \
40 41 42 43 44
  void name##RawKernel(const Context& dev_ctx,                       \
                       const DenseTensor& x,                         \
                       const DenseTensor& y,                         \
                       int axis,                                     \
                       DenseTensor* out) {                           \
45 46 47 48 49
    std::vector<const DenseTensor*> inputs;                          \
    std::vector<DenseTensor*> outputs;                               \
    inputs.emplace_back(&x);                                         \
    inputs.emplace_back(&y);                                         \
    outputs.emplace_back(out);                                       \
50
    dev_ctx.template Alloc<T>(out);                                  \
51
    funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>(          \
52
        dev_ctx, inputs, &outputs, axis, funcs::name##Functor<T>()); \
53 54 55 56 57 58 59
  }

/**
 * Kernels
 */

template <typename T, typename Context>
60 61 62 63 64 65
void MeanRawKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const std::vector<int64_t>& dims,
                   bool keep_dim,
                   bool reduce_all,
                   DenseTensor* out) {
66
  auto out_dtype = x.dtype();
67
  phi::Reduce<T, kps::AddFunctor, kps::DivideFunctor>(
68 69 70
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

71 72 73 74 75 76 77 78
template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DataType out_dtype,
                  DenseTensor* out) {
79
  phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
80 81 82
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

83 84 85 86 87 88 89 90 91
// Create the definition of Add
DEFINE_CUDA_ELEMENTWISE_OP(Add)
// Create the definition of Subtract
DEFINE_CUDA_ELEMENTWISE_OP(Subtract)
// Create the definition of Multiply
DEFINE_CUDA_ELEMENTWISE_OP(Multiply)
// Create the definition of Divide
DEFINE_CUDA_ELEMENTWISE_OP(Divide)

92
}  // namespace phi
93

94 95 96
using float16 = phi::dtype::float16;
using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;
97

98
PD_REGISTER_KERNEL(add_raw,
99 100
                   GPU,
                   ALL_LAYOUT,
101
                   phi::AddRawKernel,
102 103
                   float,
                   double,
104
                   int16_t,
105 106 107 108 109
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
110
PD_REGISTER_KERNEL(subtract_raw,
111 112
                   GPU,
                   ALL_LAYOUT,
113
                   phi::SubtractRawKernel,
114 115
                   float,
                   double,
116
                   int16_t,
117 118 119 120 121
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
122
PD_REGISTER_KERNEL(divide_raw,
123 124
                   GPU,
                   ALL_LAYOUT,
125
                   phi::DivideRawKernel,
126 127 128 129 130 131 132
                   float,
                   double,
                   int,
                   int64_t,
                   float16,
                   complex64,
                   complex128) {}
133
PD_REGISTER_KERNEL(multiply_raw,
134 135
                   GPU,
                   ALL_LAYOUT,
136
                   phi::MultiplyRawKernel,
137 138 139 140 141 142 143 144
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   float16,
                   complex64,
                   complex128) {}
145
PD_REGISTER_KERNEL(sum_raw,
146 147
                   GPU,
                   ALL_LAYOUT,
148
                   phi::SumRawKernel,
149 150 151 152
                   bool,
                   float,
                   double,
                   float16,
153
                   int16_t,
154 155 156 157
                   int,
                   int64_t,
                   complex64,
                   complex128) {
158 159
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}
160

161
PD_REGISTER_KERNEL(mean_raw,
162 163
                   GPU,
                   ALL_LAYOUT,
164
                   phi::MeanRawKernel,
165 166 167
                   float,
                   double,
                   bool,
168 169 170
                   float16,
                   int,
                   int64_t) {}