softmax_with_cross_entropy_op.h 2.9 KB
Newer Older
C
caoying03 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

3 4 5
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
C
caoying03 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

9 10 11 12 13
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */
C
caoying03 已提交
14 15 16 17

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
C
caoying03 已提交
18 19
#include "paddle/operators/math/softmax_function.h"
#include "paddle/operators/math/utils.h"
C
caoying03 已提交
20 21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

29
template <typename T>
30
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel {
C
caoying03 已提交
31
 public:
C
caoying03 已提交
32
  void Compute(const framework::ExecutionContext& context) const override {
33 34 35 36
    auto place = context.GetPlace();
    PADDLE_ENFORCE(platform::is_cpu_place(place),
                   "This kernel only runs on CPU.");

C
caoying03 已提交
37 38 39 40
    // Calculate ths softmax outputs.
    const Tensor* logits = context.Input<Tensor>("Logits");
    Tensor* softmax = context.Output<Tensor>("Softmax");
    softmax->mutable_data<T>(context.GetPlace());
41 42

    math::SoftmaxFunctor<platform::CPUPlace, T>()(logits, softmax, context);
C
caoying03 已提交
43 44 45

    // Calculate the cross entropy loss based on hard labels.
    T* softmax_out = softmax->data<T>();
46
    const int* label_data = context.Input<Tensor>("Label")->data<int>();
C
caoying03 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59

    Tensor* loss = context.Output<Tensor>("Loss");
    loss->mutable_data<T>(context.GetPlace());
    T* loss_data = loss->data<T>();

    const int batch_size = logits->dims()[0];
    const int class_num = logits->dims()[1];

    for (int i = 0; i < batch_size; ++i) {
      int index = i * class_num + label_data[i];
      loss_data[i] = -math::tolerable_value(std::log(softmax_out[index]));
    }
  }
C
caoying03 已提交
60 61
};

62
template <typename T>
63
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel {
C
caoying03 已提交
64
 public:
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  void Compute(const framework::ExecutionContext& context) const override {
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
    logit_grad->ShareDataWith<T>(*context.Input<Tensor>("Softmax"));
    T* logit_grad_data = logit_grad->data<T>();

    const int batch_size = logit_grad->dims()[0];
    const int class_num = logit_grad->dims()[1];

    const int* label_data = context.Input<Tensor>("Label")->data<int>();
    for (int i = 0; i < batch_size; ++i) {
      int index = i * class_num + label_data[i];
      logit_grad_data[index] -= .1;
    }
  }
C
caoying03 已提交
80 81 82 83
};

}  // namespace operators
}  // namespace paddle