multiary.cc 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/multiary.h"
16
#include <vector>
17
#include "paddle/phi/common/scalar.h"
18
#include "paddle/phi/core/meta_tensor.h"
19 20
#include "paddle/phi/kernels/funcs/concat_funcs.h"
namespace phi {
21

22 23 24 25 26 27 28 29 30
std::vector<DDim> GetMetaTensorsDim(const std::vector<MetaTensor*>& tensors) {
  std::vector<DDim> dims;
  dims.reserve(tensors.size());
  for (const MetaTensor* tensor : tensors) {
    dims.emplace_back(tensor->dims());
  }
  return dims;
}

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out) {
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_NE(
      product(lr_dims),
      0,
      errors::InvalidArgument("Maybe the Input variable LearningRate has not "
                              "been initialized. You may need to confirm "
                              "if you put exe.run(startup_program) "
                              "after optimizer.minimize function."));
  PADDLE_ENFORCE_EQ(
      product(lr_dims),
      1,
      errors::InvalidArgument("Learning rate should have 1 dimension"));
  auto beta1_pow_dims = beta1_pow.dims();
  PADDLE_ENFORCE_EQ(product(beta1_pow_dims),
                    1,
                    errors::InvalidArgument(
                        "Beta1 power accumulator should have 1 dimension"));
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad.dims(),
      errors::InvalidArgument(
          "Param and Grad input of AdamaxOp should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment.dims(),
      errors::InvalidArgument(
          "Param and Moment input of AdamaxOp should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      inf_norm.dims(),
      errors::InvalidArgument(
          "Param and InfNorm input of AdamaxOp should have same dimension"));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  moment_out->set_dims(param_dims);
  moment_out->set_dtype(moment.dtype());

  inf_norm_out->set_dims(param_dims);
  inf_norm_out->set_dtype(inf_norm.dtype());
}

void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out) {
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad.dims(),
      errors::InvalidArgument(
          "Param and grad input of AdadeltaOp should have same dimension."));
  PADDLE_ENFORCE_EQ(
      param_dims,
      avg_squared_grad.dims(),
      errors::InvalidArgument("Param and AvgSquaredGrad input of AdadeltaOp "
                              "should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      avg_squared_update.dims(),
      errors::InvalidArgument("Param and AvgSquaredUpdate input of AdadeltaOp "
                              "should have same dimension"));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  avg_squared_grad_out->set_dims(param_dims);
  avg_squared_grad_out->set_dtype(avg_squared_grad.dtype());

  avg_squared_update_out->set_dims(param_dims);
  avg_squared_update_out->set_dtype(avg_squared_update.dtype());
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
                                    paddle::optional<const MetaTensor&> bias,
                                    MetaTensor* out,
                                    MetaConfig config) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      2UL,
      errors::InvalidArgument("The input(X) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      y_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Y) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      weight_dims.size(),
      3UL,
      errors::InvalidArgument(
          "Expected the input(Weight) is a 3D tensor. But received %dD tensor.",
          weight_dims.size()));
  if (config.is_runtime || (x_dims[0] > 0 && y_dims[0] > 0)) {
    PADDLE_ENFORCE_EQ(x_dims[0],
                      y_dims[0],
                      errors::InvalidArgument(
                          "The first dimension(batch_size) of input(X) must be "
                          "equal to the first dimension of the input(Y)."));
  }
  PADDLE_ENFORCE_EQ(x_dims[1],
                    weight_dims[1],
                    errors::InvalidArgument(
                        "The second dimension of input(X) must be equal to "
                        "the second dimension of the input(Weight)."));
  PADDLE_ENFORCE_EQ(y_dims[1],
                    weight_dims[2],
                    errors::InvalidArgument(
                        "The second dimension of input(Y) must be equal to "
                        "the third dimension of the input(Weight)."));

  if (bias.get_ptr()) {
    auto bias_dims = bias->dims();
    PADDLE_ENFORCE_EQ(bias_dims.size(),
                      2UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      1UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[1],
                      weight_dims[0],
                      errors::InvalidArgument(
                          "The second dimension of input(Bias) must be equal "
                          "to the first dimension of the input(Weight)."));
  }

  out->set_dims({x_dims[0], weight_dims[0]});
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
void BroadcastTensorsInferMeta(const std::vector<MetaTensor*>& x,
                               std::vector<MetaTensor*> out) {
  int target_rank = 0;
  const auto& input_dims = GetMetaTensorsDim(x);

  // 1. Find Output rank = max(Inputs rank)
  for (const auto& input_ddim : input_dims) {
    target_rank = std::max(target_rank, input_ddim.size());
  }

  PADDLE_ENFORCE_GT(target_rank,
                    0,
                    errors::InvalidArgument("BroadcastTensorsOp requires at "
                                            "least one input tensor to have "
                                            "rank greater than zero"));

  std::vector<int64_t> target_dims(target_rank, 0);
  // 2. Output dim(axis=x) = max(Inputs dim(axis=x))
  for (int index = 0; index < target_rank; index++) {
    // Loop axes in reverse order,
    // For each axis, take the maximum as target size
    // Fill size = 1 if shape vector exhausts
    int target_dim_size = 1;
    for (const auto& input_ddim : input_dims) {
      // Reversed order
      int axis = static_cast<int>(input_ddim.size()) - index - 1;
      int dim_size = 1;
      if (axis >= 0) {
        dim_size = input_ddim[axis];
      }

      if (target_dim_size != 1 && dim_size != 1 &&
          target_dim_size != dim_size) {
        PADDLE_THROW(errors::InvalidArgument(
            "BroadcastTensorsOp inputs does not satisfy bcast semantics, "
            "please check axis = %d in reverse order",
            index));
      }

      // We performed bcast semantics check at python level
      // So input tensors should all have legal shape
      target_dim_size = std::max(target_dim_size, dim_size);
    }
    target_dims[target_rank - index - 1] = target_dim_size;
  }

  // 3. Set Output Dim
  for (size_t i = 0; i < out.size(); i++) {
    out[i]->set_dims(phi::make_ddim(target_dims));
    out[i]->share_lod(*(x[i]));
    out[i]->set_dtype(x[i]->dtype());
  }
}

243
void ConcatInferMeta(const std::vector<MetaTensor*>& x,
244 245 246 247 248
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config) {
  PADDLE_ENFORCE_GE(x.size(),
                    0UL,
249
                    phi::errors::InvalidArgument(
250 251
                        "The size of input meta vector should be greater"
                        "than 0."));
252 253 254 255 256 257 258 259 260
  if (axis_scalar.FromTensor()) {
    auto out_dims =
        phi::make_ddim(std::vector<int>(x.at(0)->dims().size(), -1));
    out->set_dims(out_dims);
    out->set_dtype(x.at(0)->dtype());
    out->set_layout(x.at(0)->layout());
    out->share_lod(*x.at(0));
    return;
  }
261 262 263

  int axis = axis_scalar.to<int>();
  // 1. calculate axis
264
  int rank = x.at(0)->dims().size();
265 266 267
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank,
      true,
268
      phi::errors::InvalidArgument(
269 270 271 272 273 274 275 276 277
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis));
  if (axis < 0) {
    axis = axis + rank;
  }

  // 2. calculate out dims
278
  std::vector<phi::DDim> x_dims;
279 280 281
  x_dims.reserve(x.size());
  for (const auto* x_t : x) {
    x_dims.emplace_back(x_t->dims());
282
  }
283 284
  phi::DDim out_dim =
      phi::funcs::ComputeAndCheckShape(config.is_runtime, x_dims, axis);
285

286
  out->set_dims(out_dim);
287 288 289
  out->set_dtype(x.at(0)->dtype());
  out->set_layout(x.at(0)->layout());
  out->share_lod(*x.at(0));
290 291
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out) {
  auto cond_dims = condition.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      cond_dims,
      x_dims,
      phi::errors::InvalidArgument(
          "The dims of Inputs(Condition) and Inputs(X) should be same. "
          "But received Condition's shape is [%s], X's shape is [%s]",
          cond_dims,
          x_dims));
  PADDLE_ENFORCE_EQ(x_dims,
                    y_dims,
                    phi::errors::InvalidArgument(
                        "The dims of Inputs(X) and Inputs(Y) should be same. "
                        "But received X's shape is [%s], Y's shape is [%s]",
                        x_dims,
                        y_dims));
  out->share_meta(x);
}

317
}  // namespace phi