trainer_desc.py 9.8 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of trainers."""
15

H
hutuxian 已提交
16 17
import sys
from os import path
H
hutuxian 已提交
18
__all__ = ['TrainerDesc', 'MultiTrainer', 'DistMultiTrainer', 'PipelineTrainer']
19 20 21


class TrainerDesc(object):
T
Thunderbrook 已提交
22 23 24 25 26
    '''
    Set proto from python to c++.
    Can be initialized from train_desc.
    '''

27 28 29 30 31 32
    def __init__(self):
        '''
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        with open(proto_file, 'r') as f:
            text_format.Parse(f.read(), self.proto_desc)
        '''
H
hutuxian 已提交
33 34 35 36 37
        # Workaround for relative import in protobuf under python3
        # TODO: should be fixed
        cur_path = path.dirname(__file__)
        sys.path.append(cur_path)
        sys.path.append(cur_path + "/proto")
38
        from proto import trainer_desc_pb2
39
        self.proto_desc = trainer_desc_pb2.TrainerDesc()
D
dongdaxiang 已提交
40 41 42
        import multiprocessing as mp
        # set default thread num == cpu count
        self.proto_desc.thread_num = mp.cpu_count()
D
dongdaxiang 已提交
43 44 45 46
        self._fleet_desc = None
        self._device_worker = None
        self._program = None
        self._infer = False
47

48
    def _set_fetch_var_and_info(self, fetch_vars, fetch_info, print_period):
D
dongdaxiang 已提交
49 50 51 52 53
        for i, v in enumerate(fetch_vars):
            self.proto_desc.fetch_config.fetch_var_names.extend([v.name])
            self.proto_desc.fetch_config.fetch_var_str_format.extend(
                [fetch_info[i]])
        self.proto_desc.fetch_config.print_period = print_period
D
dongdaxiang 已提交
54

55
    def _set_debug(self, debug):
56 57
        self.proto_desc.debug = debug

58
    def _set_thread(self, thread_num):
59 60
        self.proto_desc.thread_num = thread_num

61
    def _set_device_worker(self, device_worker):
D
dongdaxiang 已提交
62
        self._device_worker = device_worker
63

64
    def _set_infer(self, infer):
D
dongdaxiang 已提交
65
        self._infer = infer
66

67
    def _set_fleet_desc(self, fleet_desc):
D
dongdaxiang 已提交
68
        self._fleet_desc = fleet_desc
69

70
    def _gen_trainer_desc(self):
71 72
        pass

73
    def _set_program(self, program):
D
dongdaxiang 已提交
74
        self._program = program
D
dongdaxiang 已提交
75

76 77 78
    def _set_use_cvm(self, use_cvm=False):
        self.proto_desc.use_cvm = use_cvm

79 80 81
    def _set_no_cvm(self, no_cvm=False):
        self.proto_desc.no_cvm = no_cvm

82 83 84
    def _set_scale_datanorm(self, scale_datanorm=-1):
        self.proto_desc.scale_datanorm = scale_datanorm

T
Thunderbrook 已提交
85 86 87
    def _set_dump_slot(self, dump_slot):
        self.proto_desc.dump_slot = dump_slot

88 89 90
    def _set_mpi_rank(self, mpi_rank):
        self.proto_desc.mpi_rank = mpi_rank

T
Thunderbrook 已提交
91 92 93
    def _set_mpi_size(self, mpi_size):
        self.proto_desc.mpi_size = mpi_size

94 95 96 97 98 99 100
    def _set_dump_fields(self, dump_fields):
        for field in dump_fields:
            self.proto_desc.dump_fields.append(field)

    def _set_dump_fields_path(self, path):
        self.proto_desc.dump_fields_path = path

T
Thunderbrook 已提交
101 102 103
    def _set_dump_file_num(self, dump_file_num):
        self.proto_desc.dump_file_num = dump_file_num

104 105 106
    def _set_dump_converter(self, converter):
        self.proto_desc.dump_converter = converter

107 108 109 110
    def _set_dump_param(self, dump_param):
        for param in dump_param:
            self.proto_desc.dump_param.append(param)

111 112 113 114
    def _set_check_nan_var_names(self, check_nan_var_names):
        for var in check_nan_var_names:
            self.proto_desc.check_nan_var_names.append(var)

115 116 117 118 119 120 121 122 123 124 125 126
    def _set_adjust_ins_weight(self, config_dict):
        self.proto_desc.adjust_ins_weight_config.need_adjust = \
                config_dict.get("need_adjust", False)
        self.proto_desc.adjust_ins_weight_config.nid_slot = \
                config_dict.get("nid_slot", "")
        self.proto_desc.adjust_ins_weight_config.nid_adjw_threshold = \
                config_dict.get("nid_adjw_threshold", 0.0)
        self.proto_desc.adjust_ins_weight_config.nid_adjw_ratio = \
                config_dict.get("nid_adjw_ratio", 0.0)
        self.proto_desc.adjust_ins_weight_config.ins_weight_slot = \
                config_dict.get("ins_weight_slot", "")

X
xujiaqi01 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    def _set_copy_table_config(self, config_dict):
        config = self.proto_desc.copy_table_config
        config.need_copy = config_dict.get("need_copy", False)
        config.batch_num = config_dict.get("batch_num", 100)

        src_sparse_tables = config_dict.get("src_sparse_tables", [])
        if not isinstance(src_sparse_tables, list):
            src_sparse_tables = [src_sparse_tables]
        dest_sparse_tables = config_dict.get("dest_sparse_tables", [])
        if not isinstance(dest_sparse_tables, list):
            dest_sparse_tables = [dest_sparse_tables]
        if len(src_sparse_tables) != len(dest_sparse_tables):
            raise ValueError(
                "len(src_sparse_tables) != len(dest_sparse_tables)," \
                " %s vs %s" % (len(src_sparse_tables), \
                len(dest_sparse_tables)))
        for i in src_sparse_tables:
            config.src_sparse_tables.append(i)
        for i in dest_sparse_tables:
            config.dest_sparse_tables.append(i)

        src_dense_tables = config_dict.get("src_dense_tables", [])
        if not isinstance(src_dense_tables, list):
            src_dense_tables = [src_dense_tables]
        dest_dense_tables = config_dict.get("dest_dense_tables", [])
        if not isinstance(dest_dense_tables, list):
            dest_dense_tables = [dest_dense_tables]
        if len(src_dense_tables) != len(dest_dense_tables):
            raise ValueError(
                "len(src_dense_tables) != len(dest_dense_tables)," \
                " %s vs %s" % (len(src_dense_tables), \
                len(dest_dense_tables)))
        for i in src_dense_tables:
            config.src_dense_tables.append(i)
        for i in dest_dense_tables:
            config.dest_dense_tables.append(i)

        # user can also specify dense variables to copy,
        # instead of copy dense table
        src_var_list = config_dict.get("src_var_list", [])
        if not isinstance(src_var_list, list):
            src_var_list = [src_var_list]
        dest_var_list = config_dict.get("dest_var_list", [])
        if not isinstance(dest_var_list, list):
            dest_var_list = [dest_var_list]
        if len(src_var_list) != len(dest_var_list):
            raise ValueError(
                "len(src_var_list) != len(dest_var_list), %s vs" \
                " %s" % (len(src_var_list), len(dest_var_list)))
        for i in src_var_list:
            config.src_var_list.append(i)
        for i in dest_var_list:
            config.dest_var_list.append(i)

        dependency_map = config_dict.get("dependency_map", {})
        for key in dependency_map:
            m = config.table_denpendency_map.add()
            m.key = key
            values = dependency_map[key]
            if not isinstance(values, list):
                values = [values]
            if len(values) != 1:
                raise ValueError("dependency len %s != 1" % len(values))
            for value in values:
                m.values.append(value)
        config.dense_pull_after_copy = \
            config_dict.get("dense_pull_after_copy", True)
        config.enable_dependency = \
            config_dict.get("enable_dependency", False)
        config.sparse_copy_by_feasign = \
            config_dict.get("sparse_copy_by_feasign", True)

199
    def _desc(self):
D
dongdaxiang 已提交
200
        from google.protobuf import text_format
H
hutuxian 已提交
201
        return self.proto_desc.SerializeToString()
202

H
hutuxian 已提交
203
    def __str__(self):
204 205
        from google.protobuf import text_format
        return text_format.MessageToString(self.proto_desc)
H
hutuxian 已提交
206

207 208

class MultiTrainer(TrainerDesc):
T
Thunderbrook 已提交
209 210 211 212 213
    '''
    Implement of MultiTrainer.
    Can be init from TrainerDesc.
    '''

D
dongdaxiang 已提交
214
    def __init__(self):
215
        super(MultiTrainer, self).__init__()
D
dongdaxiang 已提交
216
        pass
217

218
    def _set_program(self, program):
219
        super(MultiTrainer, self)._set_program(program)
D
dongdaxiang 已提交
220
        self._program = program
221

222
    def _gen_trainer_desc(self):
223
        super(MultiTrainer, self)._gen_trainer_desc()
D
dongdaxiang 已提交
224
        self.proto_desc.class_name = "MultiTrainer"
D
fix bug  
dongdaxiang 已提交
225
        self._device_worker._set_infer(self._infer)
D
dongdaxiang 已提交
226
        self._device_worker._gen_worker_desc(self.proto_desc)
227

228 229

class DistMultiTrainer(TrainerDesc):
X
xujiaqi01 已提交
230 231 232 233 234
    """
    Implement of DistMultiTrainer.
    It's for Distributed training.
    """

235
    def __init__(self):
236
        super(DistMultiTrainer, self).__init__()
237
        pass
238

239
    def _set_program(self, program):
240
        super(DistMultiTrainer, self)._set_program(program)
D
dongdaxiang 已提交
241
        self._program = program
242

243
    def _gen_trainer_desc(self):
244
        super(DistMultiTrainer, self)._gen_trainer_desc()
245
        self.proto_desc.class_name = "DistMultiTrainer"
D
dongdaxiang 已提交
246
        if self._program == None:
247
            raise RuntimeError("None Program")
D
fix bug  
dongdaxiang 已提交
248 249
        self._device_worker._set_infer(self._infer)
        self._device_worker._set_program(self._program)
D
dongdaxiang 已提交
250
        self._device_worker._gen_worker_desc(self.proto_desc)
H
hutuxian 已提交
251 252 253


class PipelineTrainer(TrainerDesc):
X
xujiaqi01 已提交
254 255 256 257 258
    """
    Implement of PipelineTrainer.
    It's for Pipeline.
    """

H
hutuxian 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def __init__(self):
        super(PipelineTrainer, self).__init__()
        pass

    def _set_program(self, program):
        super(PipelineTrainer, self)._set_program(program)
        self._program = program

    def _gen_trainer_desc(self):
        super(PipelineTrainer, self)._gen_trainer_desc()
        self.proto_desc.class_name = "PipelineTrainer"
        if self._program == None:
            raise RuntimeError("None Program")
        self._device_worker._set_infer(self._infer)
        self._device_worker._set_program(self._program)
        self._device_worker._gen_worker_desc(self.proto_desc)