sequence_project_op.h 10.3 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class SequenceProjectKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    bool padding_trainable = context.Attr<bool>("padding_trainable");
    int context_stride = context.Attr<int>("context_stride");

    // InferShape by in_lod
    PADDLE_ENFORCE_EQ(in->lod().size(), 1UL,
                      "Only support one level sequence now.");
    auto lod_level_0 = in->lod()[0];
    int64_t input_stride = in->dims()[1];
    int64_t output_stride = out->dims()[1];
    int64_t padding_stride = 0;
    PADDLE_ENFORCE(input_stride * context_length == output_stride,
                   "Input size and pooling size should be consistent.");

    const LoDTensor* padding_data = nullptr;
    if (padding_trainable) {
      padding_data = context.Input<LoDTensor>("PaddingData");
      PADDLE_ENFORCE_EQ(padding_data->dims().size(), 2UL,
                        "Only support one level sequence now.");
      padding_stride = padding_data->dims()[1];
      PADDLE_ENFORCE(padding_stride == input_stride,
                     "Input size and pooling size should be consistent.");
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        im2col_ocf;

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      Tensor in_t = in->Slice<T>(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
      Tensor out_t = out->Slice<T>(static_cast<int>(lod_level_0[i]),
                                   static_cast<int>(lod_level_0[i + 1]));

      int sequence_height = in_t.dims()[0];
      int sequence_width = in_t.dims()[1];
      std::vector<int64_t> output_shape(
          {sequence_height, 1, 1, context_length,
           sequence_width});  // output_height, output_width,
                              // input_channels,
                              // filter_height, filter_width
      out_t.Resize(framework::make_ddim(output_shape));
      std::vector<int64_t> input_shape(
          {1, sequence_height,
           sequence_width});  // input_channels, input_height, input_width
      in_t.Resize(framework::make_ddim(input_shape));
      for (int j = 0; j < context_length; ++j) {
        int pad;
        int row_start;

        if (up_pad != 0) {
          pad = up_pad;
          row_start = 0;
        } else if (down_pad != 0) {
          pad = down_pad;
          row_start = down_pad;
        } else {
          pad = 0;
          row_start = 0;
        }

        im2col_ocf(context.device_context(), in_t, out_t,
                   /*stride*/ context_stride, /*pad*/ pad,
                   /*row_start*/ row_start,
                   /*row_end*/ row_start + sequence_height);
        if (padding_trainable) {
          // add up trainable data
          out_t.Resize(framework::make_ddim(
              {sequence_height * context_length, sequence_width}));
          if (up_pad != 0) {
            for (int k = 0; k < up_pad; ++k) {
              Tensor out_t_sub = out_t.Slice<T>(
                  k * context_length, k * context_length + (up_pad - k));
              Tensor w_sub = padding_data->Slice<T>(k, context_length - k);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
              out_t_sub_e.device(place) = w_sub_e;
            }
          }
          if (down_pad != 0) {
            int k =
                (sequence_height + up_pad - context_length) / context_stride +
                1;
            for (int t = 0; t + k < sequence_height; ++t) {
              Tensor out_t_sub =
                  out_t.Slice<T>((k + t) * context_length * sequence_width -
                                     t * sequence_width,
                                 (k + t) * context_length * sequence_width);
              Tensor w_sub = padding_data->Slice<T>(up_pad + 1, up_pad + 1 + t);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
              out_t_sub_e.device(place) = w_sub_e;
            }
          }
          out_t.Resize(framework::make_ddim(
              {sequence_height, context_length * sequence_width}));
        }
      }
    }
  }
};

template <typename Place, typename T>
class SequenceProjectGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    //    auto* in = context.Input<LoDTensor>("X");
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
    in_g->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();

    int context_start = context.Attr<int>("context_start");
    int context_length = context.Attr<int>("context_length");
    bool padding_trainable = context.Attr<bool>("padding_trainable");
    int context_stride = context.Attr<bool>("context_stride");

    // InferShape by in_lod
    PADDLE_ENFORCE_EQ(in_g->lod().size(), 1UL,
                      "Only support one level sequence now.");
    auto lod_g_level_0 = in_g->lod()[0];
    int64_t input_width = in_g->dims()[1];
    int64_t output_width = out_g->dims()[1];
    int64_t padding_width = 0;
    PADDLE_ENFORCE(input_width * context_length == output_width,
                   "Input size and pooling size should be consistent.");

    LoDTensor* padding_data = nullptr;
    if (padding_trainable) {
      padding_data = context.Output<LoDTensor>("PaddingData");
      padding_data->mutable_data<T>(context.GetPlace());
      PADDLE_ENFORCE_EQ(padding_data->dims().size(), 2UL,
                        "Only support one level sequence now.");
      padding_width = padding_data->dims()[1];
      PADDLE_ENFORCE(padding_width == input_width,
                     "Input size and pooling size should be consistent.");
    }

    int up_pad = std::max(0, -context_start);
    int down_pad = std::max(0, context_start + context_length - 1);

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        col2im_ocf;

    for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
      Tensor in_g_t = in_g->Slice<T>(static_cast<int>(lod_g_level_0[i]),
                                     static_cast<int>(lod_g_level_0[i + 1]));
      Tensor out_g_t = out_g->Slice<T>(static_cast<int>(lod_g_level_0[i]),
                                       static_cast<int>(lod_g_level_0[i + 1]));

      int sequence_height = in_g_t.dims()[0];
      int sequence_width = in_g_t.dims()[1];

      for (int j = 0; j < context_length; ++j) {
        if (padding_trainable) {
          out_g_t.Resize(framework::make_ddim(
              {sequence_height * context_length, sequence_width}));
          if (up_pad != 0) {
            for (int k = 0; k < up_pad; ++k) {
              Tensor out_t_sub = out_g_t.Slice<T>(
                  k * context_length, k * context_length + (up_pad - k));
              Tensor w_sub = padding_data->Slice<T>(k, context_length - k);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
              w_sub_e.device(place) = w_sub_e + out_t_sub_e;
              // out_t_sub_e.device(place) = 0;
            }
          }
          if (down_pad != 0) {
            int k =
                (sequence_height + up_pad - context_length) / context_stride +
                1;
            for (int t = 0; t + k < sequence_height; ++t) {
              Tensor out_t_sub =
                  out_g_t.Slice<T>((k + t) * context_length * sequence_width -
                                       t * sequence_width,
                                   (k + t) * context_length * sequence_width);
              Tensor w_sub = padding_data->Slice<T>(up_pad + 1, up_pad + 1 + t);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
              w_sub_e.device(place) = w_sub_e + out_t_sub_e;
              // out_t_sub_e.device(place) = 0;
            }
          }
        }
        out_g_t.Resize(framework::make_ddim(
            {sequence_height, 1, 1, context_length, sequence_width}));

        int pad;
        int row_start;

        if (up_pad != 0) {
          pad = up_pad;
          row_start = 0;
        } else if (down_pad != 0) {
          pad = down_pad;
          row_start = down_pad;
        } else {
          pad = 0;
          row_start = 0;
        }
        col2im_ocf(context.device_context(), in_g_t, out_g_t,
                   /*stride*/ context_stride, /*pad*/ pad,
                   /*row_start*/ row_start,
                   /*row_end*/ row_start + sequence_height);

        // out_g_t back to orign size
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle