pool_cudnn_op.cu.cc 20.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <string>
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/math/math_function.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/pool_op.h"
19
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
20
#include "paddle/fluid/platform/cudnn_helper.h"
21 22 23 24
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
C
chengduoZH 已提交
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode;
K
update  
Kexin Zhao 已提交
34 35
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
C
chengduoZH 已提交
36

37 38 39 40 41 42 43 44 45 46 47 48
DataLayout getLayoutFromStr(std::string data_format) {
  if (data_format == "NHWC") {
    return DataLayout::kNHWC;
  } else if (data_format == "NCHW") {
    return DataLayout::kNCHW;
  } else if (data_format == "NCDHW") {
    return DataLayout::kNCDHW;
  } else {
    return DataLayout::kNCDHW;
  }
}

C
chengduoZH 已提交
49
template <typename T>
50
class PoolCUDNNOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
51 52
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
53 54 55 56
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("Pool operator CUDA kernel must use "
                                          "CUDAPlace rather than CPUPlace."));
C
chengduoZH 已提交
57 58 59

    const Tensor *input = ctx.Input<Tensor>("X");
    Tensor *output = ctx.Output<Tensor>("Out");
60
    output->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
61
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
62
    bool exclusive = ctx.Attr<bool>("exclusive");
63
    bool adaptive = ctx.Attr<bool>("adaptive");
C
chengduoZH 已提交
64 65 66
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = input->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
82 83
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
84
        paddings.erase(paddings.begin() + i + 1);
C
chengduoZH 已提交
85 86 87
      }
    }

88 89 90 91 92 93 94 95 96 97 98
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

    const std::string str_NCHW = "NCHW", str_NHWC = "NHWC";
    const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC";

    // -----------------transformed tensor ------------------------

    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());
C
chengduoZH 已提交
99 100
    DataLayout layout;

101
    if (data_format == str_NDHWC) {
C
chengduoZH 已提交
102
      layout = DataLayout::kNCDHW;
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 4, 1, 2, 3};

      // input
      transformed_input.Resize(input->dims());

      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[4];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      in_dims_vec[4] = input->dims()[3];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5;
      trans5(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());

      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[4];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      out_dims_vec[4] = output->dims()[3];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#ifdef PADDLE_WITH_HIP
      // MIOPEN not support NHWC data layout
    } else if (data_format == str_NHWC) {
      layout = DataLayout::kNCHW;
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 3, 1, 2};

      transformed_input.Resize(input->dims());
      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[3];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());
145

146 147 148 149 150 151 152 153 154 155
      math::Transpose<paddle::platform::CUDADeviceContext, T, 4> trans;
      trans(dev_ctx, *input, &transformed_input, axis);

      transformed_output.Resize(output->dims());
      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[3];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));
#endif
156 157 158 159
    } else {
      layout = getLayoutFromStr(data_format);
      transformed_input = *input;
      transformed_output = *output;
C
chengduoZH 已提交
160
    }
C
chengduoZH 已提交
161

162 163 164 165 166 167 168 169 170
    const T *tranformed_input_data = transformed_input.data<T>();
    T *tranformed_output_data = transformed_output.mutable_data<T>(
        transformed_output.dims(), ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;

171 172 173 174 175 176
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize<int>(transformed_input.dims()));
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize<int>(transformed_output.dims()));
#else
C
chengduoZH 已提交
177
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
178
        layout, framework::vectorize<int>(transformed_input.dims()));
C
chengduoZH 已提交
179
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
180
        layout, framework::vectorize<int>(transformed_output.dims()));
181
#endif
C
chengduoZH 已提交
182 183 184 185
    PoolingMode pooling_mode;
    if (pooling_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
186 187
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : PoolingMode::kAverageInclusive;
C
chengduoZH 已提交
188 189
    }

190 191 192 193
#ifdef PADDLE_WITH_HIP
    miopenPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);
#else
C
chengduoZH 已提交
194 195
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);
196
#endif
C
chengduoZH 已提交
197 198 199

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
K
update  
Kexin Zhao 已提交
200
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
201

202 203 204 205 206 207 208 209 210 211 212 213 214
#ifdef PADDLE_WITH_HIP
    char *pool_workspace;
    size_t pool_worksize = 0;
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenPoolingGetWorkSpaceSizeV2(
            cudnn_pool_desc, cudnn_output_desc, &pool_worksize));
    PADDLE_ENFORCE_CUDA_SUCCESS(hipMalloc(&pool_workspace, pool_worksize));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenPoolingForward(
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc,
        tranformed_input_data, &beta, cudnn_output_desc, tranformed_output_data,
        false, pool_workspace, pool_worksize));
    PADDLE_ENFORCE_CUDA_SUCCESS(hipFree(pool_workspace));
#else
215
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingForward(
216 217 218
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc,
        tranformed_input_data, &beta, cudnn_output_desc,
        tranformed_output_data));
219
#endif
220 221 222 223 224 225 226 227
    // add
    if (data_format == str_NDHWC) {
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 2, 3, 4, 1};
      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v2;
      trans5_v2(dev_ctx, transformed_output, output, axis);
    }
228 229 230 231 232 233 234 235 236 237
#ifdef PADDLE_WITH_HIP
    // MIOPEN not support NHWC data layout
    if (data_format == str_NHWC) {
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 2, 3, 1};
      math::Transpose<paddle::platform::CUDADeviceContext, T, 4> trans;
      trans(dev_ctx, transformed_output, output, axis);
    }
#endif
C
chengduoZH 已提交
238 239 240 241
  }
};

template <typename T>
242
class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
C
chengduoZH 已提交
243 244
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
245 246 247 248
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument("Pool operator CUDA kernel must use "
                                          "CUDAPlace rather than CPUPlace."));
C
chengduoZH 已提交
249 250 251 252 253 254 255

    const Tensor *input = ctx.Input<Tensor>("X");
    const Tensor *output = ctx.Input<Tensor>("Out");
    const Tensor *output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

C
chengduoZH 已提交
256
    std::string pooling_type = ctx.Attr<std::string>("pooling_type");
257
    bool exclusive = ctx.Attr<bool>("exclusive");
258
    bool adaptive = ctx.Attr<bool>("adaptive");
C
chengduoZH 已提交
259 260 261
    std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    std::string data_format = ctx.Attr<std::string>("data_format");
    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = input->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
277 278
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
279
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
280
      }
C
chengduoZH 已提交
281 282
    }

283 284 285
    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }
C
chengduoZH 已提交
286

287 288 289 290 291 292 293
    // ------- tensor grad --------------
    Tensor transformed_input(input->type());
    Tensor transformed_output(output->type());
    Tensor transformed_output_grad(output_grad->type());

    input_grad->mutable_data<T>(ctx.GetPlace());
    Tensor transformed_input_grad(input_grad->type());
C
chengduoZH 已提交
294
    DataLayout layout;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    const std::string str_NCHW = "NCHW", str_NHWC = "NHWC";
    const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC";
    if (data_format == str_NDHWC) {
      layout = DataLayout::kNCDHW;
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 4, 1, 2, 3};

      // input
      transformed_input.Resize(input->dims());
      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[4];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      in_dims_vec[4] = input->dims()[3];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5;
      trans5(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());
      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[4];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      out_dims_vec[4] = output->dims()[3];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));

      transformed_output.mutable_data(ctx.GetPlace(), output->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v2;
      trans5_v2(dev_ctx, *output, &transformed_output, axis);

      // output grad
      transformed_output_grad.Resize(framework::make_ddim(out_dims_vec));
      transformed_output_grad.mutable_data(ctx.GetPlace(), output_grad->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v3;
      trans5_v3(dev_ctx, *output_grad, &transformed_output_grad, axis);

      // input grad
      transformed_input_grad.Resize(framework::make_ddim(in_dims_vec));
C
chengduoZH 已提交
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
#ifdef PADDLE_WITH_HIP
      // MIOPEN not support NHWC data layout
    } else if (data_format == str_NHWC) {
      layout = DataLayout::kNCHW;
      auto &dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();
      std::vector<int> axis{0, 3, 1, 2};

      // input
      transformed_input.Resize(input->dims());
      auto in_dims_vec = framework::vectorize(input->dims());
      in_dims_vec[1] = input->dims()[3];
      in_dims_vec[2] = input->dims()[1];
      in_dims_vec[3] = input->dims()[2];
      transformed_input.Resize(framework::make_ddim(in_dims_vec));
      transformed_input.mutable_data(ctx.GetPlace(), input->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 4> trans4;
      trans4(dev_ctx, *input, &transformed_input, axis);

      // output
      transformed_output.Resize(output->dims());
      auto out_dims_vec = framework::vectorize(output->dims());
      out_dims_vec[1] = output->dims()[3];
      out_dims_vec[2] = output->dims()[1];
      out_dims_vec[3] = output->dims()[2];
      transformed_output.Resize(framework::make_ddim(out_dims_vec));

      transformed_output.mutable_data(ctx.GetPlace(), output->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 4> trans4_v2;
      trans4_v2(dev_ctx, *output, &transformed_output, axis);

      // output grad
      transformed_output_grad.Resize(framework::make_ddim(out_dims_vec));
      transformed_output_grad.mutable_data(ctx.GetPlace(), output_grad->type());

      math::Transpose<paddle::platform::CUDADeviceContext, T, 4> trans4_v3;
      trans4_v3(dev_ctx, *output_grad, &transformed_output_grad, axis);

      // input grad
      transformed_input_grad.Resize(framework::make_ddim(in_dims_vec));
#endif
C
chengduoZH 已提交
383
    } else {
384 385 386 387 388
      layout = getLayoutFromStr(data_format);
      transformed_input = *input;
      transformed_output = *output;
      transformed_output_grad = *output_grad;
      transformed_input_grad = *input_grad;
C
chengduoZH 已提交
389
    }
C
chengduoZH 已提交
390

391 392 393 394 395 396 397 398 399
    const T *input_data = transformed_input.data<T>();
    const T *output_data = transformed_output.data<T>();
    const T *output_grad_data = transformed_output_grad.data<T>();

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedPoolingDescriptor pool_desc;

400 401 402 403 404 405
#ifdef PADDLE_WITH_HIP
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize<int>(transformed_input.dims()));
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize<int>(transformed_output.dims()));
#else
C
chengduoZH 已提交
406
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
407
        layout, framework::vectorize<int>(transformed_input.dims()));
C
chengduoZH 已提交
408
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
409
        layout, framework::vectorize<int>(transformed_output.dims()));
410
#endif
C
chengduoZH 已提交
411 412
    PoolingMode pooling_mode;
    if (pooling_type == "max") {
D
dzhwinter 已提交
413 414 415 416 417
      if (FLAGS_cudnn_deterministic) {
        pooling_mode = PoolingMode::kMaximumDeterministic;
      } else {
        pooling_mode = PoolingMode::kMaximum;
      }
C
chengduoZH 已提交
418
    } else {
419 420
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : PoolingMode::kAverageInclusive;
C
chengduoZH 已提交
421 422
    }

423 424 425 426
#ifdef PADDLE_WITH_HIP
    miopenPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);
#else
C
chengduoZH 已提交
427 428
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, ksize, paddings, strides);
429
#endif
C
chengduoZH 已提交
430 431 432

    // ------------------- cudnn pool algorithm ---------------------
    auto handle = ctx.cuda_device_context().cudnn_handle();
K
update  
Kexin Zhao 已提交
433
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduoZH 已提交
434
    if (input_grad) {
435 436
      T *input_grad_data = transformed_input_grad.mutable_data<T>(
          transformed_input_grad.dims(), ctx.GetPlace());
437 438 439 440 441 442 443 444 445 446 447 448 449 450
// Because beta is zero, it is unnecessary to reset input_grad.
#ifdef PADDLE_WITH_HIP
      char *pool_workspace;
      size_t pool_worksize = 0;
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenPoolingGetWorkSpaceSizeV2(
              cudnn_pool_desc, cudnn_output_desc, &pool_worksize));
      PADDLE_ENFORCE_CUDA_SUCCESS(hipMalloc(&pool_workspace, pool_worksize));
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenPoolingBackward(
          handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
          cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
          &beta, cudnn_input_desc, input_grad_data, pool_workspace));
      PADDLE_ENFORCE_CUDA_SUCCESS(hipFree(pool_workspace));
#else
451
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingBackward(
C
chengduoZH 已提交
452
          handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
453 454
          cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
          &beta, cudnn_input_desc, input_grad_data));
455
#endif
456 457 458 459 460 461 462 463

      if (data_format == str_NDHWC) {
        auto &dev_ctx =
            ctx.template device_context<paddle::platform::CUDADeviceContext>();
        std::vector<int> axis{0, 2, 3, 4, 1};
        math::Transpose<paddle::platform::CUDADeviceContext, T, 5> trans5_v4;
        trans5_v4(dev_ctx, transformed_input_grad, input_grad, axis);
      }
464 465 466 467 468 469 470 471 472 473
#ifdef PADDLE_WITH_HIP
      // MIOPEN not support NHWC data layout
      if (data_format == str_NHWC) {
        auto &dev_ctx =
            ctx.template device_context<paddle::platform::CUDADeviceContext>();
        std::vector<int> axis{0, 2, 3, 1};
        math::Transpose<paddle::platform::CUDADeviceContext, T, 4> trans4_v4;
        trans4_v4(dev_ctx, transformed_input_grad, input_grad, axis);
      }
#endif
C
chengduoZH 已提交
474 475 476 477 478 479 480 481
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
K
Kexin Zhao 已提交
482
namespace plat = paddle::platform;
C
chengduoZH 已提交
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
                   ops::PoolCUDNNOpKernel<float>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
                   ops::PoolCUDNNGradOpKernel<float>,
                   ops::PoolCUDNNGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
                   ops::PoolCUDNNOpKernel<float>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
                   ops::PoolCUDNNGradOpKernel<float>);
#else
K
Kexin Zhao 已提交
499
REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
500
                   ops::PoolCUDNNOpKernel<float>,
K
Kexin Zhao 已提交
501 502 503
                   ops::PoolCUDNNOpKernel<double>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
504
                   ops::PoolCUDNNGradOpKernel<float>,
C
chengduo 已提交
505 506
                   ops::PoolCUDNNGradOpKernel<double>,
                   ops::PoolCUDNNGradOpKernel<plat::float16>);
507

K
Kexin Zhao 已提交
508
REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
509
                   ops::PoolCUDNNOpKernel<float>,
K
Kexin Zhao 已提交
510 511
                   ops::PoolCUDNNOpKernel<double>,
                   ops::PoolCUDNNOpKernel<plat::float16>);
K
Kexin Zhao 已提交
512
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
513
                   ops::PoolCUDNNGradOpKernel<float>,
514
                   ops::PoolCUDNNGradOpKernel<double>);
515
#endif