analyzer_seq_conv1_tester.cc 7.7 KB
Newer Older
T
Tao Luo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

struct DataRecord {
  std::vector<std::vector<int64_t>> title1_all, title2_all, title3_all, l1_all;
  std::vector<std::vector<int64_t>> title1, title2, title3, l1;
  std::vector<size_t> title1_lod, title2_lod, title3_lod, l1_lod;
  size_t batch_iter{0};
  size_t batch_size{1};
  size_t num_samples;  // total number of samples
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= title1_all.size()) {
      data.title1_all.assign(title1_all.begin() + batch_iter,
                             title1_all.begin() + batch_end);
      data.title2_all.assign(title2_all.begin() + batch_iter,
                             title2_all.begin() + batch_end);
      data.title3_all.assign(title3_all.begin() + batch_iter,
                             title3_all.begin() + batch_end);
      data.l1_all.assign(l1_all.begin() + batch_iter,
                         l1_all.begin() + batch_end);
      // Prepare LoDs
      data.title1_lod.push_back(0);
      data.title2_lod.push_back(0);
      data.title3_lod.push_back(0);
      data.l1_lod.push_back(0);
      CHECK(!data.title1_all.empty());
      CHECK(!data.title2_all.empty());
      CHECK(!data.title3_all.empty());
      CHECK(!data.l1_all.empty());
      CHECK_EQ(data.title1_all.size(), data.title2_all.size());
      CHECK_EQ(data.title1_all.size(), data.title3_all.size());
      CHECK_EQ(data.title1_all.size(), data.l1_all.size());
      for (size_t j = 0; j < data.title1_all.size(); j++) {
        data.title1.push_back(data.title1_all[j]);
        data.title2.push_back(data.title2_all[j]);
        data.title3.push_back(data.title3_all[j]);
        data.l1.push_back(data.l1_all[j]);
        // calculate lod
        data.title1_lod.push_back(data.title1_lod.back() +
                                  data.title1_all[j].size());
        data.title2_lod.push_back(data.title2_lod.back() +
                                  data.title2_all[j].size());
        data.title3_lod.push_back(data.title3_lod.back() +
                                  data.title3_all[j].size());
        data.l1_lod.push_back(data.l1_lod.back() + data.l1_all[j].size());
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      // load title1 data
      std::vector<int64_t> title1_data;
      split_to_int64(data[0], ' ', &title1_data);
      // load title2 data
      std::vector<int64_t> title2_data;
      split_to_int64(data[1], ' ', &title2_data);
      // load title3 data
      std::vector<int64_t> title3_data;
      split_to_int64(data[2], ' ', &title3_data);
      // load l1 data
      std::vector<int64_t> l1_data;
      split_to_int64(data[3], ' ', &l1_data);
      title1_all.push_back(std::move(title1_data));
      title2_all.push_back(std::move(title2_data));
      title3_all.push_back(std::move(title3_data));
      l1_all.push_back(std::move(l1_data));
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor title1_tensor, title2_tensor, title3_tensor, l1_tensor;
  title1_tensor.name = "title1";
  title2_tensor.name = "title2";
  title3_tensor.name = "title3";
  l1_tensor.name = "l1";
  auto one_batch = data->NextBatch();
  int title1_size = one_batch.title1_lod[one_batch.title1_lod.size() - 1];
  title1_tensor.shape.assign({title1_size, 1});
  title1_tensor.lod.assign({one_batch.title1_lod});
  int title2_size = one_batch.title2_lod[one_batch.title2_lod.size() - 1];
  title2_tensor.shape.assign({title2_size, 1});
  title2_tensor.lod.assign({one_batch.title2_lod});
  int title3_size = one_batch.title3_lod[one_batch.title3_lod.size() - 1];
  title3_tensor.shape.assign({title3_size, 1});
  title3_tensor.lod.assign({one_batch.title3_lod});
  int l1_size = one_batch.l1_lod[one_batch.l1_lod.size() - 1];
  l1_tensor.shape.assign({l1_size, 1});
  l1_tensor.lod.assign({one_batch.l1_lod});

  // assign data
  TensorAssignData<int64_t>(&title1_tensor, one_batch.title1);
  TensorAssignData<int64_t>(&title2_tensor, one_batch.title2);
  TensorAssignData<int64_t>(&title3_tensor, one_batch.title3);
  TensorAssignData<int64_t>(&l1_tensor, one_batch.l1);
  // Set inputs.
  input_slots->assign({title1_tensor, title2_tensor, title3_tensor, l1_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::INT64;
  }
}

void SetConfig(AnalysisConfig *cfg) {
  cfg->model_dir = FLAGS_infer_model;
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->specify_input_name = true;
  cfg->enable_ir_optim = true;
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
TEST(Analyzer_seq_conv1, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  std::vector<PaddleTensor> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
164 165
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
T
Tao Luo 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    // the first inference result
    PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
    size_t size = GetSize(outputs[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(outputs[0].data.data());
    // output is probability, which is in (0, 1).
    for (size_t i = 0; i < size; i++) {
      EXPECT_GT(result[i], 0);
      EXPECT_LT(result[i], 1);
    }
  }
}

// Check the fuse status
TEST(Analyzer_seq_conv1, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
186
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
T
tensor-tang 已提交
187 188 189 190 191 192

  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_TRUE(fuse_statis.count("seqconv_eltadd_relu_fuse"));
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 2);
  EXPECT_EQ(fuse_statis.at("seqconv_eltadd_relu_fuse"), 6);
T
Tao Luo 已提交
193
  EXPECT_EQ(num_ops, 32);
T
Tao Luo 已提交
194 195 196 197 198 199 200 201 202
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_conv1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
203 204
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
T
Tao Luo 已提交
205 206 207 208
}

}  // namespace inference
}  // namespace paddle